

BHR*Solutions*

Flexible Reactors and Plant for

Process Intensification

Andrew Green

The Fluid Engineering Centre

Contents

Introduction to PI Static Mixers and HEX Reactors FlexReactor FlexReactor Performance **FlexPlant Conclusions**

Process Intensification -An Introduction

PI - What's it about?

- Reduction in plant size by at least factor of 100
 Prof. C Ramshaw (1970s)
- Step change in product, process and *business* performance through in-depth understanding of the fluid dynamics and process chemistry

• BHR (1990s)

Process Intensification -An Introduction

Pl Philosophy

PI is a design philosophy where the fluid dynamics in a process are matched to the chemical, biological and/or physical requirements...

Nicelogattettime Eleattic ministry ... enabling the process to proceed safely at its optimum chemical kinetic rate with minimal byproduct formation

The Big Issue for PI

UK/Western European industry focusing on lower tonnage, higher added value products (fine, speciality, pharmaceuticals..)

Key issues in manufacturing are *flexibility* and *responsiveness* to address changing market demands

Major plus point of traditional batch stirred reactors are their flexibility - they can do anything..... Badly!

Pl invariably improves performance - but how can it be made flexible?

Static Mixers

High energy dissipation rate, $\boldsymbol{\epsilon}$

100s W/kg

Uniform energy dissipation

Narrow residence time distribution

plug flow

Rapid dispersion

radial mixing

High mass transfer rates

10 - 100 x stirred tank k_La

High gas flow rate

HEX Reactors

If reaction is highly exothermic must get heat out as it is produced

Combine mixing, reaction and heat transfer in one unit, eg Marbond:

Flexible Reactors

PI - match reactor to requirements of chemistry

Tailored solution - how can it then be flexible?

Flexibility through reconfigurability

Flexible Reactors

Reactors: FlexReactor

Features

- Simple but effective static mixer technology
- Highly flexible package
- Wide range of materials of construction

Benefits

- Use for wide range of processes
- Flexibility to cope with undefined chemistry

Recipient of UK Government Smart Award

FlexReactor Energy Dissipation Rate

FlexPlant - Features

Able to rapidly screen suitability of reactions for PI

Wide range of flow, temperature and pressure conditions

Readily reconfigurable for wide range of reactions (incorporates *FlexReactor*)

Can be operated to GMP

Scale up well understood

Flexible Plant -Where Next?

Flexible Plant -Where Next?

Scale down?

FlexPlant is 'Lab-sized' but 'Pilot Scale' in terms of throughput (needs 10's litres)

Difficult to construct at much smaller scales - and flow regime likely to change (turbulent to laminar)

How do you design a small scale equivalent of Flexplant to work with 10's or 100's mls? and scale between the two?

Watch this space!

Conclusions

PI offers many benefits for the higher added value chemical sectors

Must build in flexibility through reconfigurability

FlexReactor and FlexPlant provide this opportunity - and allow companies to 'try out' PI at low risk and investment

Plant available now (purchase or rental), but future developments planned in 'scale up' and 'scale down'