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� Born in Sicily  the 18/04/1983 and grow up in Geraci Siculo (Pa) until the end of the 
High School and then moved to Milan

� July 2005: BSc in Energy Engineering – Politecnico di Milano 

� Dec 2008: MSc in Energy Engineering – Politecnico di Milano

� Mar. 2013: PhD (with honour) in Energy and Nuclear Science and  Technology –
Politecnico di Milano: mid-long term solutions for coal power plant with CCS

� Apr. 2013 – Apr. 2017: Postdoc position at the TU Eindhoven : Chemical looping 
technologies & Membrane reactor

� May 2017 – Nov. 2017 : Postdoc position at Tecnalia (Spain) : Membrane reactor 
design and scale-up

� From Jan 2018 Lecturer in Chemical Engineering at the University of 
Manchester
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Research Interests
� Gas-Solid reactions: chemical looping, sorption 

technologies
� Membrane and membrane reactors
� High temperature fuel cells
� Low-carbon technologies applied to industry (Refineries, 

Iron&Steel, bulk Chemicals, etc..)

Research Approach
� From particle to complete process modelling
� Material and Reactor testing
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� Very high selectivity toward CO2
and H2O (CLC)

� High oxygen capacity
� High stability under repeated 

cycles (support use):
� thermal 
� chemical
� mechanical

� Low Toxicity
� High melting point
� Low Cost
� High resistance to contaminants
� Attrition resistance (in case of 

FBR application)
� Catalytic properties (WGS/SMR)
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conversion. Chichester: Wiley, 416 pp, 2015.
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Chemical Looping in Brief



material 
type

support type
Oxygen 

Carrier pair 
considered

Melting 
points °C

Oxygen ratio, 
R0 (not 

considering 
support)

Reaction enthalpy at 1000°C** 
(kJ/mol reactant gas

Metal cost 
($/ton metal)

CO H2 CH4 C O2

Ni based

α-Al2O3,γ-Al2O3, Al2O3, 
NiAl2O4, NiAl2O4-MgO, 
MgAl2O4, Bentonite, ZrO2-
MgO

NiO/Ni 1455°C 0.214 -47 -15 134 75 -468 15'000

Cu based α-Al2O3,γ-Al2O, MgAl2O4 CuO/Cu 1085°C 0.201 -134 -101 -212 -99 -296 7'000

Cu based
Al2O3,γ-Al2O, Sepiolite, 
MgAl2O4, Bentonite, ZrO2, 
TiO2, SiO2

CuO/Cu2O 1235°C 0.112 -151 -119 -283 -135 -260 7'000

Fe based Al2O3, Bentonite Fe2O3/Fe3O4 1565°C 0.033 -42 -10 154 84 -479 200

Ilmenite 
(FeTiO3)

- Fe2O3/FeO 1565°C 0.100 -4.7 27.5 304 158 -554 <200

Mn based ZrO2-MgO Mn2O3/MnO 1347°C 0.101 -102 -70 -85 -36 -359 <200

Mn based SiO2 Mn2O3/Mn3O4 1347°C 0.034 -192 -160 -446 -217 -179 <200

Spallina, V., Hamers, H.P., Gallucci, F., Sint Annaland, Chemical Looping Combustion for Power Production, Process intensification for sustainable energy 
conversion. Chichester: Wiley, 416 pp, 2015.
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FBR comparison PBR

� Fuel Flexibility �

☺
Oxygen Carriers 

Design �

� Operation in a plant �

�
High pressure

operation ☺

� Gas/solid separation ☺

� Solid circulation ☺

☺
System complexity

(valves, piping, cyclones, 
loop seal etc..)

�
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The Concept
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CLR in PBR – how does it work?
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� The OXIDATION step heats up the bed (850-900˚C)
� The REDUCTION with a fuel moves the heat front to 

the reactor outlet (cooling less than 30% of the bed)
� The REFORMING acts as heat removal:

� the heat front cools down the reactor ‘from left to 
right’

� the reaction front cools down the reactor ‘from 
top to down’
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REDUCTION REFORMING OXIDATION
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� Reduction with PSA off-gas leads to full gas conversion 
and the gas is delivered at high temperature

� The reforming step is providing H2-rich gas at the 
equilibrium conditions. Due to the lower temperature, the 
CH4 conversion decreases at the end of reforming.

� During Oxidation the Gas temperature is in the range of 
770-800˚C

CLR in PBR – how does it work?



Testing & Validation
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Spallina, V. , Marinello B., Gallucci, F., Romano M.C., Sint Annaland, M. van. (2017). Chemical Looping Reforming in 
packed bed reactors: experimental validation and large scale reactor design. Fuel Processing Technology,156, 156-170. 

Tests have been carried out:

� 1 nL/min of CH4 (500 Wth input)

� 60 cm of reactive length

� H2O/CH4 and CO2/CH4 = 4-5

� Temperature 800-900 °C

� Pressure = atmospheric

� (500 g) Ni supported on  CaAl2O4
(JM catalyst)



Integration
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Reformed Syngas
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90% CO2 capture 
post-combustion 
MEA solvent

65% CO2 capture 
with MDEA solvent



Integration H 2
(Chemical Looping Reforming)
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results
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SMR SMR SMR CLR - PBR

N/A MEA flue gas MDEA syngas oxy-CLC
NG flow rate kg/s 2.62 2.62 2.62 2.62

H2 flow rate Nm3/h 29490 29494 29199 29222

net electric power MWel 2.11 -0.48 0.34 -0.66

steam export (160°C, 6 bar) kg/s 4.58 -6.70 1.17 5.34

H2 yield molH2/molNG 2.49 2.49 2.48 2.46

Eq. Ref. efficiency ηH2,eq H2,LHV/NGeq, LHV 81.3% 63.4% 73.7% 78.4%
Heat Rate Gcal/kNm3

H2 3.25 4.02 3.52 3.31

CO2 specific emissions, ECO2 gCO2/Nm3
H2 856.78 85.66 313.20 0.00

CO2 avoidance % - 90.0% 63.4% 100.0%

CAPEX € × 106 50.13 84.06 58.40 54.61

CCA cost €/ton CO2 - 49.90 16.90 10.00

Hydrogen Production 
Ready technologies



Integration CH 3OH 
(Haldor Topsoe)
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30-40% reformed syngas
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Integration CH 3OH 
(Chemical Looping Reforming)
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CLR - PBR

Haldor Tropsoe oxy-CLC
NG flow rate kg/s 73.55 73.55

NG thermal Input MWLHV, NG 3489.86 3489.95

MeOH flow rate tonn/d 10230 10117

net electric power MWel -30.59 26.14

steam export (160°C, 6 bar) kg/s 45.16 69.20

carbon efficiency molCH3OH/molNG,carb 83.7% 82.7%

Eq. Ref. efficiency MeOH ,LHV/NGeq, LHV 77.0% 78.9%
Heat Rate GJLHV,NG/tonMeOH 28.94 28.35

CO2 specific emissions, ECO2 kgCO2/tonMeOH 273.84 4.95

CO2 avoidance % - 98%

CAPEX € × 106 705.83 441.73

Methanol Production
two stage 

reforming +ASU



Conclusions

� The yield of products is not affected 
� The heat recovery increases (more steam-to-export)
� The electricity consumption reduces (especially for 

MeOH)
� Higher CO2 avoidance 
� Reduced CAPEX: no absorption processes (H2/NH3

production) neither cryogenic ASU (MeOH, FT-process)
� Adiabatic vessels instead of furnace for the reforming 

process
� Synergy and flexibility in the products
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Conclusions
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� Chemical Looping technologies can be also efficiently integrated in 
other processes

→ Packed Bed Reactor for Chemicals
� Proof of concepts have been carried out already for steam/dry 

chemical looping reforming
→ Chemical Looping exploitation in industrially relevant 

processes
� Fuel-to-chemicals conversion is less demanding in terms of heat 

management than fuel-to-heat/power: the overall heat of reaction is 
lower when compared to fuel combustion; and the operating 
conditions are less severe

→ CLR vs CLC
� Exploiting chemical looping technology in other industrially 

relevant processes 
→ chemical looping convenient without CO2 capture policies
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� Large particle diameter (typically higher than 1 mm in packed bed reactor)

� Heterogeneous catalysis of Oxygen Carriers

� Combination of different OC formulations

� 1,2-D dynamically operated reactor modelling and model validation in the new gas-

solid reaction lab at high pressure/high temperature reactions (up to 1 kg of active bed

material).

� Combination of Steam-Iron and Chemical Looping Reforming reactions to enhance

the H2-rich streams and asses the feasibility use at small-scale

� Combination of Chemical Looping and Paraffin de-hydrogenation and oxy-de-

hydrogenation due to the synergies in terms of exothermic and endothermic reactions
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