

26th Process Intensification Network meeting Newcastle, 26th of May 2018

Chemical Looping Reforming with Packed Bed Reactor for Bulk Chemical Production with near-zero CO₂ emissions

Vincenzo Spallina

Lecturer in Chemical Engineering School of Chemical Engineering and Analytical Science Group of Catalysis and Porous Materials

> mail@:vincenzo.spallina[at]manchester.ac.uk tel: +44 (0) 161 306 9339

Summary

- About me
- Chemical Looping in brief
- The Concept
- Testing and Modelling
- Techno-Economic Assessment
- Conclusions
- Future works @University of Manchester

About me

The University of Manchester

- Born in Sicily the 18/04/1983 and grow up in Geraci Siculo (Pa) until the end of the High School and then moved to Milan
- July 2005: <u>BSc in Energy Engineering</u> Politecnico di Milano
- Dec 2008: <u>MSc in Energy Engineering</u> Politecnico di Milano
- Mar. 2013: <u>PhD (with honour) in Energy and Nuclear Science and Technology</u> Politecnico di Milano: *mid-long term solutions for coal power plant with CCS*
- Apr. 2013 Apr. 2017: <u>Postdoc position at the TU Eindhoven</u>: Chemical looping technologies & Membrane reactor
- May 2017 Nov. 2017 : <u>Postdoc position at Tecnalia (Spain)</u>: Membrane reactor design and scale-up
- From Jan 2018 Lecturer in Chemical Engineering at the University of Manchester

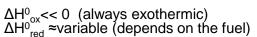
About me

Research Interests

- Gas-Solid reactions: chemical looping, sorption technologies
- Membrane and membrane reactors
- High temperature fuel cells
- Low-carbon technologies applied to industry (Refineries, Iron&Steel, bulk Chemicals, etc..)

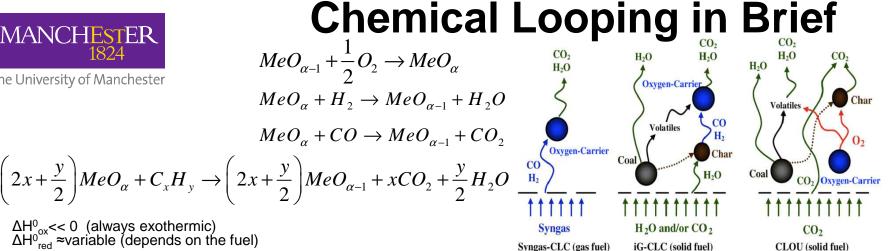
Research Approach

- From particle to complete process modelling
- Material and Reactor testing



Chemical Looping Reforming with Packed Bed Reactor for Bulk Chemical Production with near-zero CO₂ emissions

- Chemical Looping in brief
- The Concept
- Testing and Modelling
- Techno-Economic Assessment
- Conclusions
- Future works @University of Manchester



The University of Manchester

- Very high selectivity toward CO₂ and H₂O (CLC)
- High oxygen capacity
- High stability under repeated cycles (support use):
 - thermal
 - chemical
 - mechanical

- Low Toxicity
- High melting point
- Low Cost
- High resistance to contaminants
- Attrition resistance (in case of FBR application)
- Catalytic properties (WGS/SMR)

Spallina, V., Hamers, H.P., Gallucci, F., Sint Annaland, Chemical Looping Combustion for Power Production, Process intensification for sustainable energy conversion. Chichester: Wiley, 416 pp, 2015.

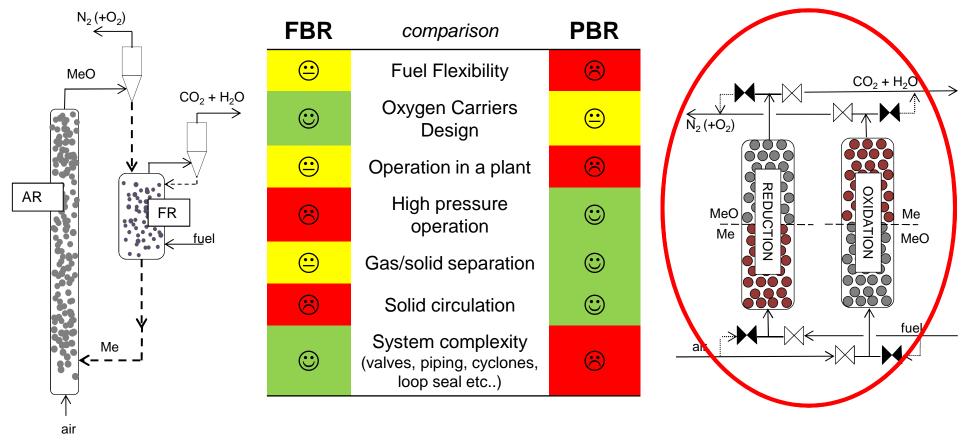
Chemical Looping in Brief

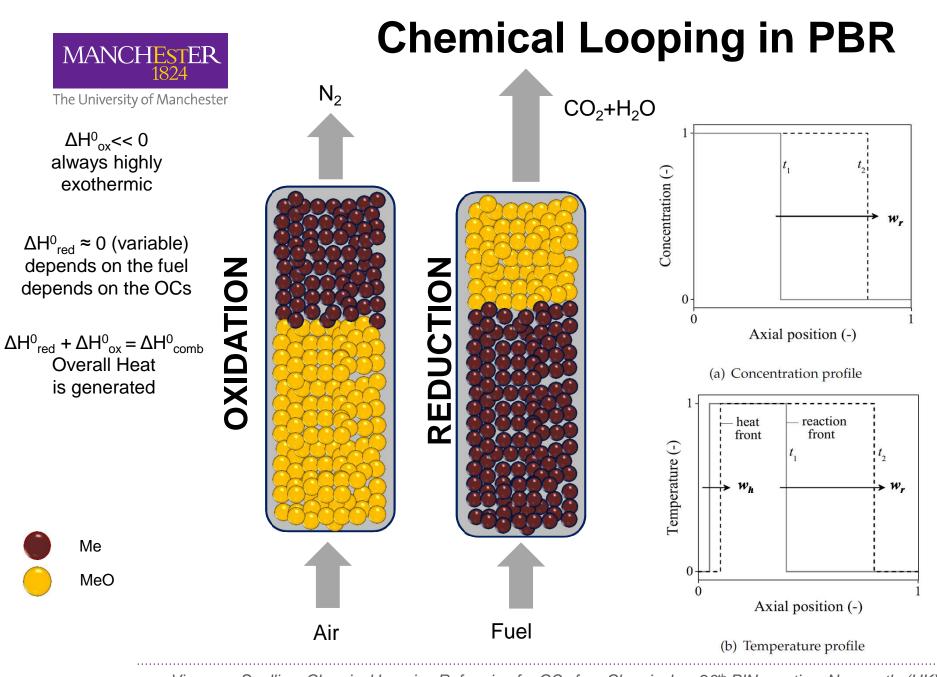
The University of Manchester		Oxygen		Oxygen ratio,	Reaction enthalpy at 1000°C** (kJ/mol reactant gas					
material type	support type	Carrier pair considered	Melting points °C	R₀ (not considering support)	со	H ₂	CH4	с	O ₂	Metal cost (\$/ton metal)
Ni based	α-Al ₂ O ₃ ,γ-Al ₂ O ₃ , Al ₂ O ₃ , NiAl ₂ O ₄ , NiAl ₂ O ₄ -MgO, MgAl ₂ O ₄ , Bentonite, ZrO ₂ - MgO	NiO/Ni	1455°C	0.214	-47	-15	134	75	-468	15'000
Cu based	α -Al ₂ O ₃ , γ -Al ₂ O, MgAl ₂ O ₄	CuO/Cu	1085°C	0.201	-134	-101	-212	-99	-296	7'000
Cu based	AI_2O_3,γ - AI_2O , Sepiolite, MgAI_2O_4, Bentonite, ZrO ₂ , TiO ₂ , SiO ₂	CuO/Cu ₂ O	1235°C	0.112	-151	-119	-283	-135	-260	7'000
Fe based	Al ₂ O ₃ , Bentonite	Fe ₂ O ₃ /Fe ₃ O ₄	1565°C	0.033	-42	-10	154	84	-479	200
lmenite FeTiO ₃)	_	Fe ₂ O ₃ /FeO	1565°C	0.100	-4.7	27.5	304	158	-554	<200
/In based	ZrO ₂ -MgO	Mn ₂ O ₃ /MnO	1347°C	0.101	-102	-70	-85	-36	-359	<200
/In based	SiO ₂	Mn ₂ O ₃ /Mn ₃ O ₄	1347°C	0.034	-192	-160	-446	-217	-179	<200
Snallina V	Hamers, H.P., Gallucci, F., Sir	nt Annaland Chem	ical Looping (Combustion for Pow	or Produ	uction Pr	ocass inter	sification	for sust	

MANCHESTER

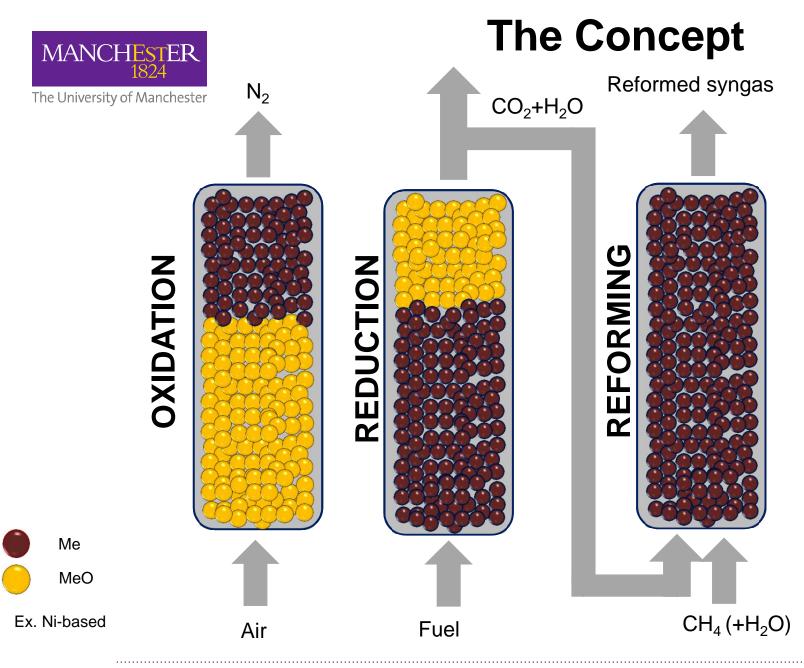
.....

Spallina, V., Hamers, H.P., Gallucci, F., Sint Annaland, Chemical Looping Combustion for Power Production, Process intensification for sustainable energy conversion. Chichester: Wiley, 416 pp, 2015.

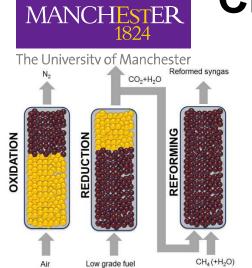


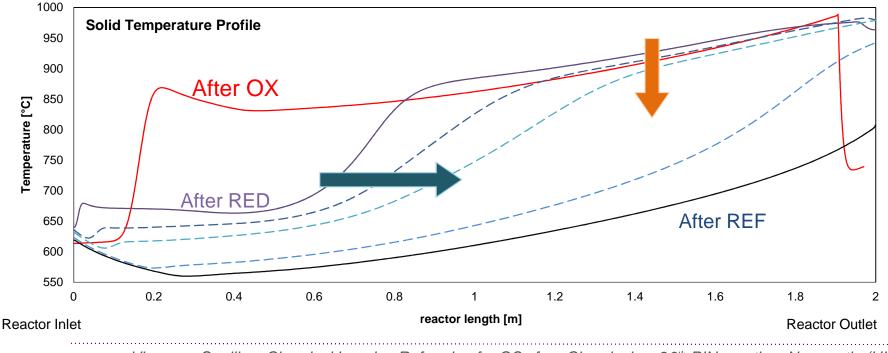

Chemical Looping in Brief

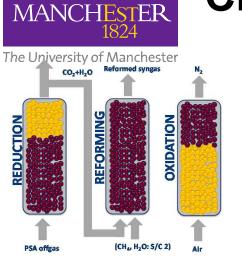
Packed Bed

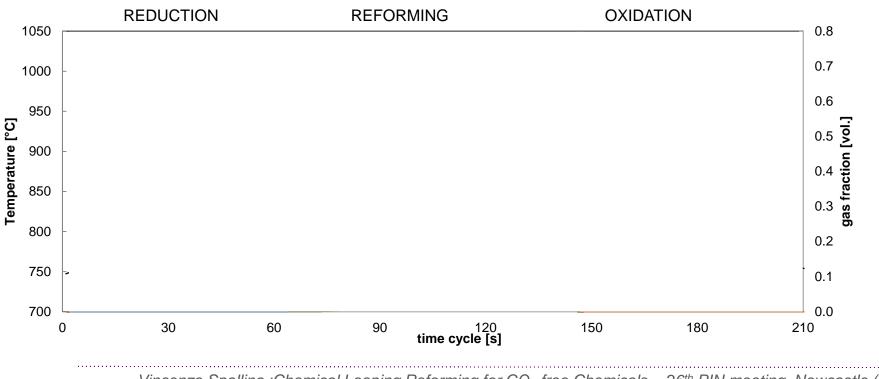

The University of Manchester

Fluidized Bed




Vincenzo Spallina : Chemical Looping Reforming for CO₂-free Chemicals - 26th PIN meeting, Newcastle (UK)


CLR in PBR – how does it work?


- The OXIDATION step heats up the bed (850-900°C)
- The REDUCTION with a fuel moves the heat front to the reactor outlet (cooling less than 30% of the bed)
- The REFORMING acts as heat removal:
 - the heat front cools down the reactor 'from left to right'
 - the reaction front cools down the reactor 'from top to down'

CLR in PBR – how does it work?

- Reduction with PSA off-gas leads to full gas conversion and the gas is delivered at high temperature
- The reforming step is providing H₂-rich gas at the equilibrium conditions. Due to the lower temperature, the CH₄ conversion decreases at the end of reforming.
- During Oxidation the Gas temperature is in the range of 770-800°C

Tests have been carried out:

- ✓ 1_{n} L/min of CH₄ (500 W_{th} input)
- ✓ 60 cm of reactive length
- ✓ H_2O/CH_4 and $CO_2/CH_4 = 4-5$
- ✓ Temperature 800-900 °C
- ✓ Pressure = atmospheric

exp 30s

exp 60s

exp 90s

exp 120s

01

model 30s

0.2

0.3

Reactor axial position, m

0.4

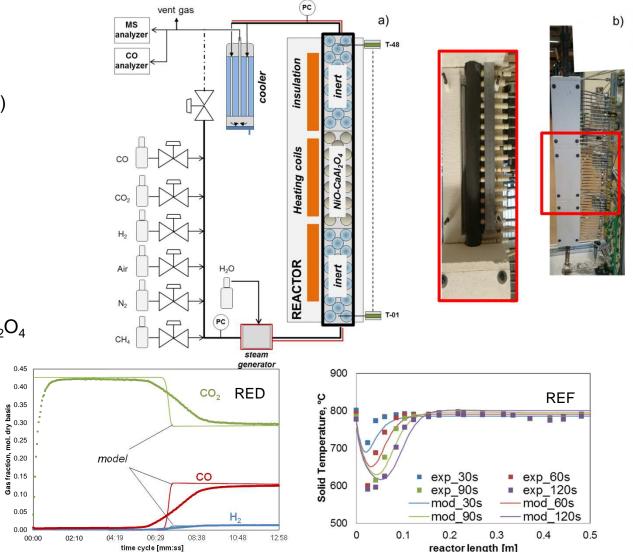
0.5

1000

800

Solid Temperature, °

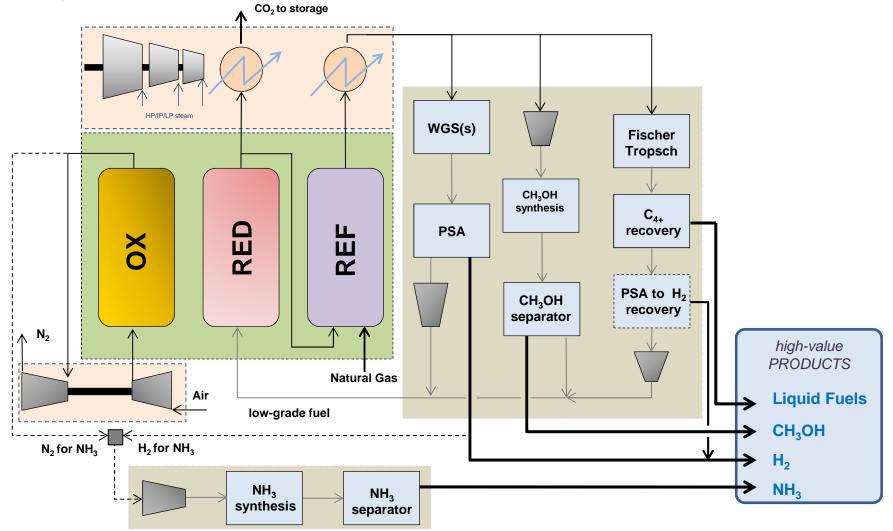
200


0

ç

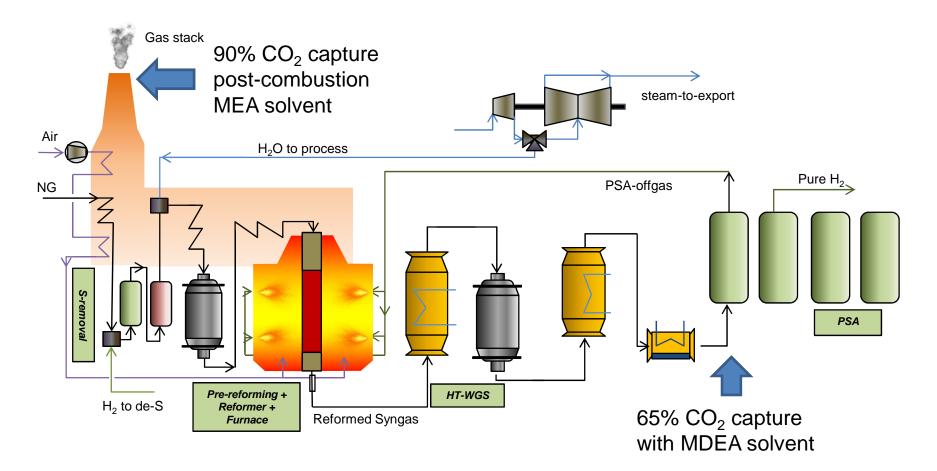
OX

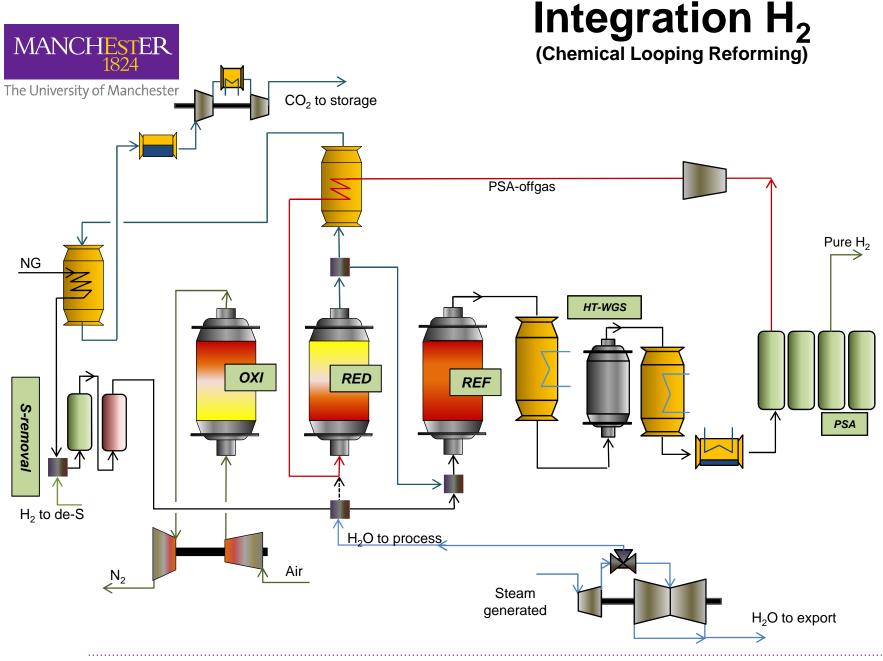
Testing & Validation



Spallina, V., Marinello B., Gallucci, F., Romano M.C., Sint Annaland, M. van. (2017). Chemical Looping Reforming in packed bed reactors: experimental validation and large scale reactor design. Fuel Processing Technology,156, 156-170.

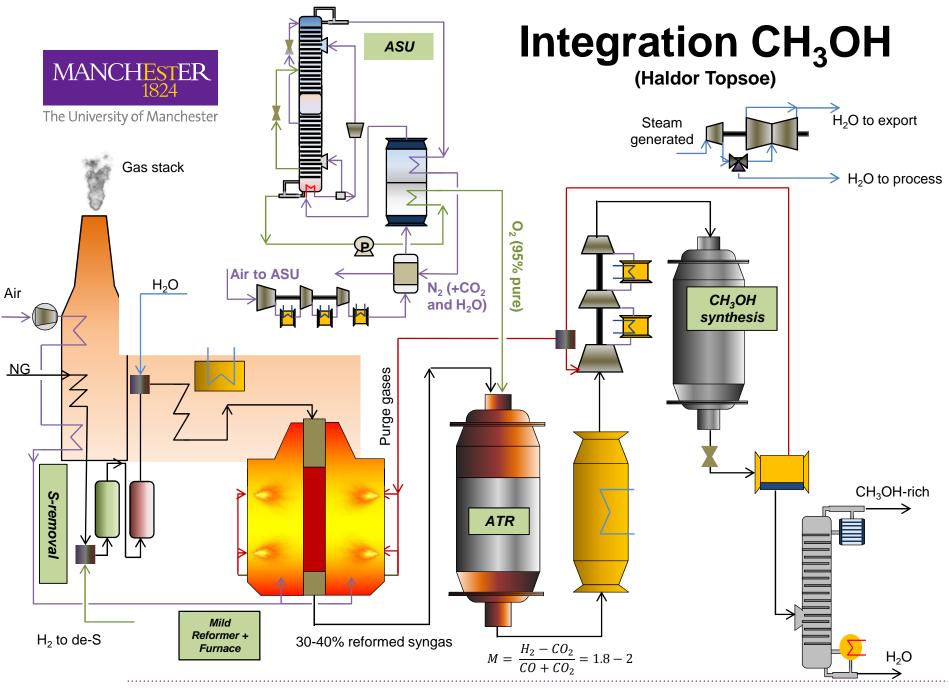
Integration


The University of Manchester

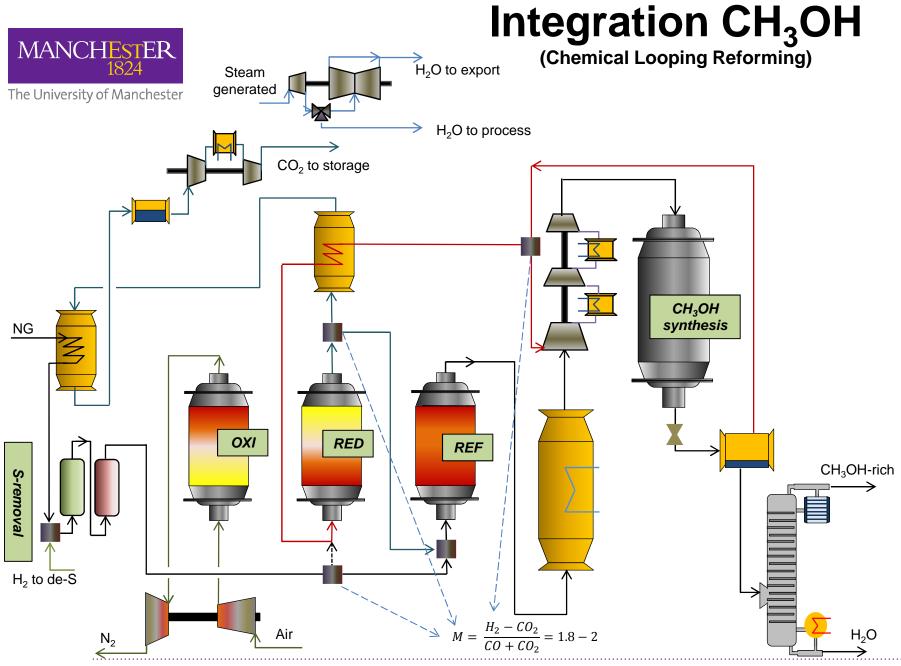


Integration H₂ (Fired Tubular Reforming)

The University of Manchester



Vincenzo Spallina : Chemical Looping Reforming for CO₂-free Chemicals - 26th PIN meeting, Newcastle (UK)



Undragon Dra	SMR	SMR	SMR	CLR - PBR		
Hydrogen Pro	Ready technologies					
		N/A	MEA flue gas	MDEA syngas	oxy-CLC	
NG flow rate	kg/s	2.62	2.62	2.62	2.62	
H ₂ flow rate	Nm ³ /h	29490	29494	29199	29222	
net electric power	MW _{el}	2.11	-0.48	0.34	-0.66	
steam export (160°C, 6 bar)	kg/s	4.58	-6.70	1.17	5.34	
H ₂ yield	mol _{H2} /mol _{NG}	2.49	2.49	2.48	2.46	
Eq. Ref. efficiency $\eta_{H2,eq}$	H _{2,LHV} /NG _{eq, LHV}	81.3%	63.4%	73.7%	78.4%	
Heat Rate	Gcal/kNm ³ _{H2}	3.25	4.02	3.52	3.31	
CO_2 specific emissions, E_{CO2}	g _{CO2} /Nm ³ _{H2}	856.78	85.66	313.20	0.00	
CO ₂ avoidance	%	-	90.0%	63.4%	100.0%	
CAPEX	€× 10 ⁶	50.13	84.06	58.40	54.61	
CCA cost	€/ton _{CO2}	-	49.90	16.90	10.00	

Vincenzo Spallina : Chemical Looping Reforming for CO₂-free Chemicals - 26th PIN meeting, Newcastle (UK)

Vincenzo Spallina : Chemical Looping Reforming for CO₂-free Chemicals - 26th PIN meeting, Newcastle (UK)

Methanol Pr	two stage reforming +ASU	CLR - PBR	
		Haldor Tropsoe	oxy-CLC
NG flow rate	kg/s	73.55	73.55
NG thermal Input	MW _{LHV, NG}	3489.86	3489.95
MeOH flow rate	tonn/d	10230	10117
net electric power	MW _{el}	-30.59	26.14
steam export (160°C, 6 bar)	kg/s	45.16	69.20
carbon efficiency	mol _{CH3OH} /mol _{NG,carb}	83.7%	82.7%
Eq. Ref. efficiency	MeOH _{,LHV} /NG _{eq, LHV}	77.0%	78.9%
Heat Rate	$GJ_{LHV,NG}$ /ton _{MeOH}	28.94	28.35
CO_2 specific emissions, E_{CO2}	kg _{CO2} /ton _{MeOH}	273.84	4.95
CO ₂ avoidance	%	-	98%
CAPEX	€× 10 ⁶	705.83	441.73

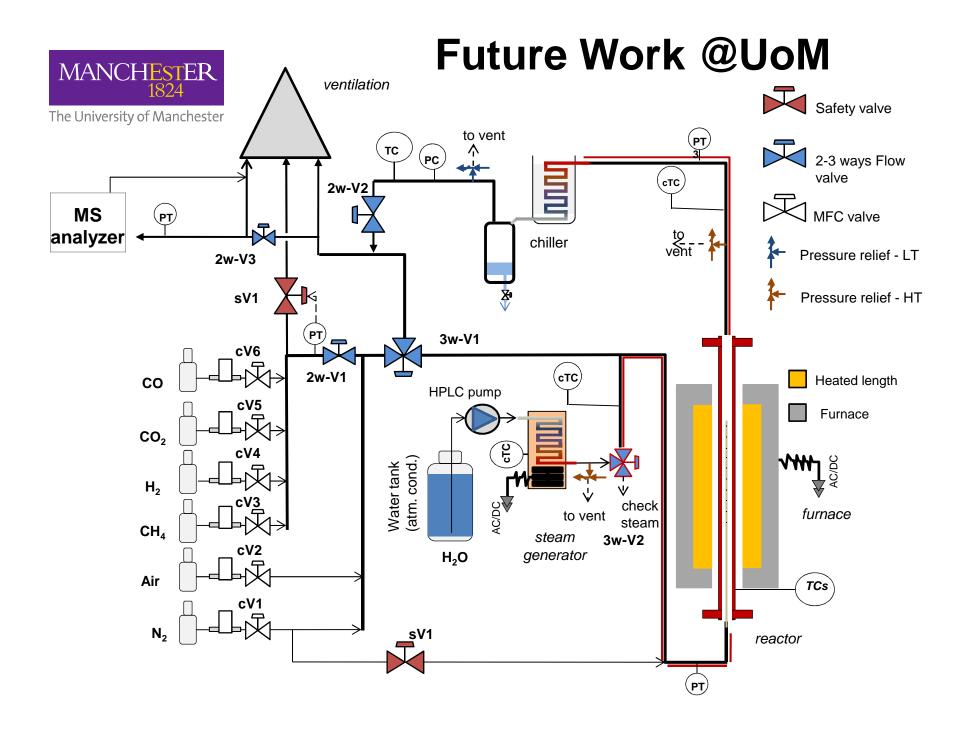
- The yield of products is not affected
- The heat recovery increases (more steam-to-export)
- The electricity consumption reduces (especially for MeOH)
- Higher CO₂ avoidance
- Reduced CAPEX: no absorption processes (H₂/NH₃ production) neither cryogenic ASU (MeOH, FT-process)
- Adiabatic vessels instead of furnace for the reforming process
- Synergy and flexibility in the products

Conclusions

The University of Manchester

 Chemical Looping technologies can be also efficiently integrated in other processes

→ Packed Bed Reactor for Chemicals


Proof of concepts have been carried out already for steam/dry chemical looping reforming

→ Chemical Looping exploitation in industrially relevant processes

 Fuel-to-chemicals conversion is less demanding in terms of heat management than fuel-to-heat/power: the overall heat of reaction is lower when compared to fuel combustion; and the operating conditions are less severe

\rightarrow CLR vs CLC

- Exploiting chemical looping technology in other industrially relevant processes
 - \rightarrow chemical looping convenient without CO₂ capture policies

Future Work @UoM

- Large particle diameter (typically higher than 1 mm in packed bed reactor)
- Heterogeneous catalysis of Oxygen Carriers
- Combination of different OC formulations
- 1,2-D dynamically operated reactor modelling and model validation in the <u>new gas-</u> <u>solid reaction lab at high pressure/high temperature reactions</u> (up to 1 kg of active bed material).
- Combination of Steam-Iron and Chemical Looping Reforming reactions to enhance the H₂-rich streams and asses the feasibility use at small-scale
- Combination of Chemical Looping and Paraffin de-hydrogenation and oxy-dehydrogenation due to the synergies in terms of exothermic and endothermic reactions

Thank you for your attention!

Vincenzo Spallina

School of Chemical Engineering and Analytical Science Group of Catalysis and Porous Materials

mail@:vincenzo.spallina[at]manchester.ac.uk tel: +44 (0) 161 306 9339

Acknowledgements

The author is grateful to the **Chemical Process** Intensification Group from Eindhoven University of Technology (The NL) for the great help and relevant effort which have made possible to start this research in the past years and to the School of Chemical Engineering and Analytical Science of the University of Manchester for the current technical and economical support