

Process Intensification Network (PIN) Meeting

Overview of intensified carbon capture research at Sheffield University & Inter-cooling for RPB Absorber

Meihong Wang

16th May 2018

Help Transform Tomorrow.

Outline

- Overview of PI research at the University of Sheffield
- RPB absorber scale-up: Need for intercooler
 - Energy balance liquid temperature rise
 - Model-based analysis focusing on impact of liquid temperature
- Intercooler designs for RPB absorber
 - Stationary Shell and tube and plate heat exchanger
 - Rotary design
- Summary

Background

- Carbon capture and storage (CCS) is critical for meeting the landmark 2015 Paris Agreement on Climate Change
- 196 countries pledged to keep global temperatures "well below" 2°C above pre-industrial levels
- Without CCS it will cost more to meet this target

Help

Transform Tomorrow.

□ Funding from UK Research Councils' Energy Research Programme – NERC

- ✓ Project Title: Whole system modelling and analysis for CO₂ capture, transport and storage (CCS)
- ✓ Collaborated with Imperial College London, University of Sussex, British Geological Survey (BGS)
- ✓ Project Period: *from Oct. 2010 to Dec. 2014*

Key findings from this research

- Packed columns required for solvent-based carbon capture are huge: solventbased CO2 capture from a 500 MWe Coal-fired subcritical power plant will require 2 absorbers of at least 9 m in diameter and 17 m packing height and 1 regenerator with similar dimension^[1]
- Limiting Factors: we determined that huge size of packed columns was because that the process was mass transfer limited^[2].
- The *dynamics of the PCC using MEA process is very slow* (time constant around 57 minutes) since high L/G ratio required (generally around 6.0 mass/mass for flue gas from typical power plants) to achieve the capture level^[1]

[1] Lawal, A., Wang, M., Stephenson, P. and Obi, O. (2012), Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation, *Fuel*, Vol. 101, p115-128. *Highly Cited Paper in Web of Science*[2] Biliyok, C., Lawal, A., Wang, M and Seibert, F. Dynamic modelling, validation and analysis of post-combustion chemical absorption CO2 capture plant. International Journal of Greenhouse Gas Control Vol. 9 (2012), 424-445

Comparison of Different PI Methods

Undertook a review of Process Intensification (PI) techniques and devices from 2014 to address the size of the packed bed in solventbased capture.

We concluded that:

- Rotating packed bed (RPB) has the highest potential to enhance mass transfer compared to other PI devices
- Size of the packed bed absorbers and strippers could reduce by up 10 and 8 times respectively when replaced with their RPB-based equivalent

Heat Transfer

Mass transfer capacity in various devices (Chen JF. Presentation at GPE-EPIC, 14-17June 2009)

New PFD for intensified is proposed.

- Intensified heat exchangers used for cross heat exchanger
- The condenser is no longer necessary.

Wang, M., Joel, A.S., Ramshaw, C., Eimer, D., N. M. Musa (2015), Process intensification for postcombustion CO_2 capture based on Chemical Absorption: a critical review, *Applied Energy*, Vol. 158, p275 – 291. *Highly Cited Paper in Web of Science*

RPB Applications

RPB vs Packed bed absorber (Chen, 2009)

About 37 RPB units deployed for different commercial processes worldwide (HIGEE, 2014)

3	Client	Year	Number of RPB
1	Ruicheng Xintai NanoMaterials Technology Co., Ltd.	1999	3
2	Inner Mongolia Wuhai New Material Co., Ltd.	2000	1
3	Dow Chemical Company	2000	3
4	Shandong Haize NanoMaterial Co., Ltd.	2001	3
5	R&D center of PetroChina at Karamay	2006	1
6	North China Pharmaceutical Co., Ltd.	2006	1
7	Fujian Refining & Petrochemical Co., Ltd.	2007	1
8	Wanhua Industrial Group	2008	2
9	Zhejiang NHU Company Ltd.	2008	1
10	NanoMaterials Technology Private Ltd.	2008	1
11	SINOPEC Shengli Oilfield Company	2009	1
12	R&D center of PetroChina at Jilin	2010	1
13	Zhejiang NHU Company Ltd.	2010	1
14	SINOPEC Shengli Oilfield Company	2010	2
15	Zhejiang Juhua Sulfuric Acid Plant	2010	2
16	Tongling Huaxing Fine Chemical Co., Ltd.	2011	3
17	SINOPEC Northeast China Oilfield Company	2011	2
18	Lagos Industria Química	2011	3
19	Shanghai No.4 Reagent & H.V.Chemical Co., Ltd.	2011	1
20	Shandong Lianmeng Chemical Co., Ltd.	2012	1
21	SINOPEC Nanjing Chemical Industries Co., Ltd.	2012	3

No commercial application of RPB for Solvent-based carbon capture!!!

Project I EPSRC – PI CC

Project title: Process Intensification for Post-combustion Carbon Capture using Rotating Packed Bed through Systems Engineering Techniques

Aim: To study the application of RPB in a solvent-based capture from a CCGT power plant

Funder: UK EPSRC Grand Challenges on CCS (Ref: EP/M001458/1)

Funding: £1.27 million

Key Partners: Uni. of Sheffield, Imperial College London and Newcastle University **Project Period:** Oct. 2014 to Dec. 2018

Project II – EPSRC – RPB Absorber & Microwave Stripper

Project title: A compact CO_2 capture process to combat industrial emissions **Funder:** UK EPSRC Grand Challenges on Industrial CCS (EPSRC Ref: EP/N024672/1) **Funding:** £980 k **Key partners:** Uni. of Edinburgh, Newcastle Uni. and Uni. of Sheffield **Project period:** Oct. 2016 to Sept. 2019

Project III – EU ROLINCAP

- Project title: Systematic design and testing of advanced rotating packed bed process and phase change solvents for intensified post-combustion CO₂ capture (ROLINCAP)
- Funder: *EU H2020 Low Carbon Energy Scheme*
- Funding: €3.2 million
- Key Partners: CERTH (Greece), Imperial College London (UK), Chalmers (Sweden), Sheffield, NCL
- Project Period: Oct. 2016 to Sept. 2019

Rotating Packing Bed (RPB) PPC process

A 5M DEEA/2M MAPA solution: (a) before, (b) during, and (c) after CO_2 loading (Pinto et al., 2014)

Process Intensification Network (PIN) Meeting

Inter-cooling in intensified carbon capture with solvents

Eni Oko, Colin Ramshaw and Meihong Wang

16th May 2018

Help Transform Tomorrow.

Background

In conventional packed bed absorber using 30 wt% MEA, 15-30°C temp rise is expected (Freguia and Rochelle, 2003)

Absorber profile for conventional packed bed using 30 wt% MEA solvent (Freguia and Rochelle, 2003)

Absorber inter-cooling improves their performance by about 10% (Freguia and Rochelle, 2003)

Benchmark solvent for RPB in Carbon Capture

In RPB absorber, stronger MEA solution (e.g. 70-80 wt%) is proposed to be used as the benchmark solvent:

- More rapid kinetics, necessary due to reduced residence time
- Lower solvent flowrate

Based on experience from packed beds, there could be significant temperature rise in the RPB with strong MEA as solvent but this has not been proven

- Existing RPB absorber rigs are designed to operate with differential loadings (Δα) of 0.04- 0.1 mol CO2/mol MEA and do not show significant temperature rise except in the sump
- With this $\Delta \alpha$ basis, commercial scale flow rate will be high, the strength of the MEA solution notwithstanding
- Inter-cooling will boost the performance of RPBs

Solvent flowrate requirements

Scale-up case study for solvent-based capture from a 250 MWe CCGT power plant:

- Solvent flowrate for 30 wt% MEA and about $\Delta \alpha$ of 0.2 mol CO2/mol MEA is about 720 kg/s (Canepa et al., 2012)
- High flowrate at low $\Delta \alpha$ for higher concentration

✓ Higher solvent make-up rate

RPB absorbers should be designed to achieve higher $\Delta \alpha$ than currently reported

Solvent flowrate for different conditions

The aim of this study:

- Investigate potential temperature rise for CO2 absorption in different MEA wt%
- Propose design for RPB absorber intercooler

Estimation of ΔH

•Temp rise is mainly due to heat of absorption (Δ H)

- Existing $\Delta H \ data$ (obtain via calorimetric measurement for strong MEA solution):
 - ✓ Only existing data is for 70 wt% MEA taken at 120°C (Kim *et al.*, 2014)
 - ✓ Data not suitable for absorber as they operate at much lower temperature
- •ΔH estimated using Gibbs-Helmholtz relation:

$$\left[\frac{\partial \ln p}{\partial \left(\frac{1}{T}\right)}\right]_{P} = \frac{\Delta H}{R}$$

•Involve predicting Δ H from solubility (VLE) data of CO₂ in MEA solution

Estimation of ΔH

- •VLE data predicted using electrolyte NRTL model in Aspen Plus®
- The electrolyte NRTL model was regressed and validated with VLE data from literature (Mason and Dodge, 1936; Aronu *et al.*, 2011) to ensure they give good prediction especially for strong MEA solutions

Model prediction for 45 wt% MEA solution with data from Aronu et al. (2011)

Estimation of ΔH

Model prediction for 60 wt% MEA solution with data from Aronu et al. (2011)

Model prediction for 74 wt% MEA solution with data from Aronu et al. (2011)

Estimation of ΔH

- Inherent inaccuracy due to numerical differentiation, prediction error could be as high as $\pm 20\%$ (Lee *et al.*, 1974)
- Regardless, fairly good agreement between predicted ΔH and measured values from literature
- The trend is also similar to the reported trend for 70 wt% (at T = 120°C) by Kim *et al.* (2014)
- The trend also generally show that ΔH remain fairly constant up to CO_2 loading of about 0.4 0.45 before it begins to decline signifying the beginning of saturation

Estimation of temperature rise (ΔT)

$$\Delta T = \frac{\Delta H (\alpha_{rich} - \alpha_{lean})}{\rho_{soln} C_{p,soln}} [MEA]$$

- Three hypothetic scenario involving 0.15, 0.2 and 0.25 respectively for $\Delta \alpha$ was selected
- Physical properties (*p*_{soln}&*C*_{p,soln}) are obtained from Aspen Plus for different MEA concentrations and loadings
- Temperature rise (Δ*T*) could be as high as 80°C in some cases
- For the given conditions (which is likely for up to 90% capture level), temperature rise for 70-80 wt% MEA solution is unacceptably high and RPBs operating with this concentration of MEA must be operated with inter-coolers

RPB absorber model

- RPB absorber model developed in gPROMS and validated using data from Jassim (2002)
- Evaluated impact of temperature on:
 - Liquid phase MEACOO⁻
 - Equilibrium partial pressure of CO2

RPB absorber model validation for different cases from Jassim (2002)

Mass transfer resistance

MEACOO⁻ Concentration

- Below loading of 0.5, CO2 exists mainly in the form MEACOO⁻ (Liquid speciation plot)
- Increasing temperature reduces
 MEACOO⁻ indicating that
 absorption is gradually reversing
- This will reduce the absorption capacity of the solvent

Liquid phase MEACOO- concentration at a loading of 0.2 (left) and 0.3 (right) for 55 and 73.2 wt% MEA solvent

Equilibrium partial pressure of CO2 (P_{CO2})

- *P*_{CO2} increases with temperature
 - Due to increasing liquid phase CO2 concentration
 - Tipping point above 340 K
- Reduces mass transfer gradient
- More significant as wt% MEA increases

Impact of temperature on equilibrium partial pressure

Liquid phase CO2 concentration for 55 wt% MEA at an initial loading of 0.2 $\,$

Mass transfer resistance

 General mass transfer
 enhancement due to impact on reaction kinetics

Mass transfer resistance for different temperature and concentrations

Design options for RPB intercooler

Option 1: Stationary intercooler

Design options:

- Shell and tube design
- Plate and frame design

Design options for RPB intercooler

Option 2: Rotary intercooler (New design)

Cooling water channels incorporated within the RPB rotor

Shell and tube design

- The tubes are assumed to be ³/₄ inch
 OD tubes
- Tube material is stainless steel
- 2-pass (split ring floating)
 configuration according to TEMA standard
- Sizing calculations based on 250
 MWe CCGT power plant

 $A = \frac{Q}{UF_t \Delta T_{lm}} \qquad \begin{array}{l} Q = \text{Heat duty} \\ U = \text{Overall heat transfer coefficient} \\ F @ t = \text{Temperature correction for } \Delta T_{lm} \\ \Delta T_{lm} = \text{Log mean temperature difference} \end{array}$

Shell and tube design

- High heat transfer area
- Low pressure drop

Plate and frame design

- Plate thickness of 0.50 mm
- Plate material is stainless steel
- Based on Alfa Laval design chart

Alfa Laval design chart (Haslego and Polley, 2002)

Plate and frame design

- Heat transfer area is significantly less
- Significantly higher pressure drop

Estimated physical size

Summary

- Potential temperature rise is significant with strong MEA solution (70 wt% MEA)
- Intercoolers are therefore inevitable for expected capture levels to be achieved
- With Shell and tube design for intercoolers, physical sizes of the intercooler will be significantly huge
- Plate and frame designs will result to more compact intercoolers and are therefore preferred

Oko, E. Wang, M., Ramshaw (2017), Study of absorber intercooling in solvent-based CO₂ capture based on rotating packed bed technology, 9th International Conference of Applied Energy, Cardiff, UK, will be published in Energy Procedia, Vol. 142, p3511-3516.

On-going work

- Scale-up of RPB-based solvent-based capture process
 - 250 MWe CCGT power plant
 - RPB absorbers to include inter-coolers
- Implementation of new RPB absorber design with intensified inter-cooler

References

HIGEE, 2014. Available at: http://higeeusa.com/ [Accessed Aug., 2017]

Chen, J.-F. The recent developments in the HiGee technology. *International Green Process Engineering Congress and the European Process Intensification Conference (GPE-EPIC)*, Venice, Italy June 14-17, 2009.

Freguia, S and Rochelle, G. T. (2003). Modelling of CO₂ capture by aqueous monoethanolamine. *AIChE Journal*, 49(7), 1676–1686.

Kim, I., Hoff, K.A. and Mejdell, T. (2014). Heat of absorption of CO_2 with aqueous solutions of MEA: new experimental data. *Energy Procedia*, 63, 1446 – 1455.

Aronu, U.E., Gondal, S., Hessen, E.T., Haug-Warberg, T., Hartono, A., Hoff, K.A. and Svendsen, H. F. (2011). Solubility of CO_2 in 15, 30, 45 and 60 mass% MEA from 40 to 120°C and model representation using the extended UNIQUAC framework. *Chemical Engineering Science*, 66, 6393–6406.

Mason, J.W., Dodge, B. F. (1936). Equilibrium absorption of carbon dioxide by solutions of the ethanolamines. *Trans. Am. Inst. Chem. Eng.*, *32*, 27–48.

Lee, J. I., Otto, F. D., Mather, A. E. (1974). The Solubility of H2S and CO₂ in Aqueous Monoethanolamine Solutions. *Can. J. Chem. Eng.*, *52*.

Jassim, M.S. 2002. Process intensification: Absorption and desorption of carbon dioxide from monoethanolamine solutions using HIGEE technology. *Ph.D. Thesis*, University of Newcastle, UK.

Canepa, R., Wang, M., Biliyok, C. and Satta, A. 2012. Thermodynamic analysis of combined cycle gas turbine power plant with postcombustion CO₂ capture and exhaust gas recirculation. *Proc. IMechE Part E: J Process Mechanical Engineering* 227(2), 89–105. Haslego, C. and Polley, G. Compact Heat Exchangers - Part I: Designing plate-and-frame heat exchangers. *CEP Magazine*, *Sept., 2002.* Retrieved from http://www.mie.uth.gr/ekp_yliko/CEP_Plate_and_Frame_HX.pdf

Thank you

For more information, contact: **Prof Meihong Wang** Chemical and Biological Engineering Dept The University of Sheffield, UK Tel.: +44 1142227160. E-mail address: Meihong.Wang@sheffield.ac.uk

