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▪ Overview of PI research at the University of Sheffield

▪ RPB absorber scale-up: Need for intercooler

▪ Energy balance – liquid temperature rise

▪ Model-based analysis focusing on impact of liquid temperature 

▪ Intercooler designs for RPB absorber

▪ Stationary – Shell and tube and plate heat exchanger

▪ Rotary design

▪ Summary 



Background Slide 
MasterCarbon capture and storage
(CCS) is critical for meeting
the landmark 2015 Paris
Agreement on Climate Change

▪ 196 countries pledged to keep global
temperatures “well below” 2oC above
pre-industrial levels

▪ Without CCS it will cost more to
meet this target
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Funding from UK Research Councils’ Energy Research Programme –
NERC

✓ Project Title: Whole system modelling and analysis for CO2 capture, transport
and storage (CCS)

✓ Collaborated with Imperial College London, University of Sussex, British
Geological Survey (BGS)

✓ Project Period: from Oct. 2010 to Dec. 2014

http://computingforsustainability.files.wordpress.com/2009/03/uk_energy_flow_20071.png?w=500&h=333
http://www.nationalpost.com/related/links/144151.bin?size=404x272


Key findings from this research

▪ Packed columns required for solvent-based carbon capture are huge: solvent-
based CO2 capture from a 500 MWe Coal-fired subcritical power plant will
require 2 absorbers of at least 9 m in diameter and 17 m packing height and 1
regenerator with similar dimension[1]

▪ Limiting Factors: we determined that huge size of packed columns was because
that the process was mass transfer limited[2].

▪ The dynamics of the PCC using MEA process is very slow (time constant around
57 minutes) since high L/G ratio required (generally around 6.0 mass/mass for
flue gas from typical power plants) to achieve the capture level[1]

[1] Lawal, A., Wang, M., Stephenson, P. and Obi, O. (2012), Demonstrating full-scale post-combustion CO2 capture for
coal-fired power plants through dynamic modelling and simulation, Fuel, Vol. 101, p115-128. Highly Cited Paper in Web of Science

[2] Biliyok, C., Lawal, A., Wang, M and Seibert, F. Dynamic modelling, validation and analysis of post-combustion
chemical absorption CO2 capture plant. International Journal of Greenhouse Gas Control Vol. 9 (2012), 424-445



Comparison of Different PI Methods

Undertook a review of Process Intensification
(PI) techniques and devices from 2014 to
address the size of the packed bed in solvent-
based capture.

We concluded that:

▪ Rotating packed bed (RPB) has the highest
potential to enhance mass transfer
compared to other PI devices

▪ Size of the packed bed absorbers and
strippers could reduce by up 10 and 8
times respectively when replaced with their
RPB-based equivalent

Mass transfer capacity in various devices
(Chen JF. Presentation at GPE-EPIC, 14-17June 2009)



New PFD for 
intensified is proposed. 

o Intensified heat
exchangers used for cross
heat exchanger

o The condenser is no
longer necessary.

Wang, M., Joel, A.S., Ramshaw, C., Eimer, D., N. M.
Musa (2015), Process intensification for post-
combustion CO2 capture based on Chemical
Absorption: a critical review, Applied Energy, Vol. 158,
p275 – 291. Highly Cited Paper in Web of Science



RPB Applications

Slide Master

RPB vs Packed bed absorber (Chen, 2009)

No commercial application of RPB for Solvent-based carbon capture!!!

About 37 RPB units deployed for different
commercial processes worldwide (HIGEE, 2014)



Project I EPSRC – PI CC Slide Master

Project title: Process Intensification for
Post-combustion Carbon Capture using
Rotating Packed Bed through Systems
Engineering Techniques
Aim: To study the application of RPB
in a solvent-based capture from a CCGT
power plant
Funder: UK EPSRC Grand Challenges on
CCS (Ref: EP/M001458/1)
Funding: £1.27 million
Key Partners: Uni. of Sheffield, Imperial
College London and Newcastle University
Project Period: Oct. 2014 to Dec. 2018



Project II – EPSRC – RPB Absorber & Microwave Stripperl
Master
Project title: A compact CO2 capture

process to combat industrial emissions

Funder: UK EPSRC Grand Challenges on

Industrial CCS (EPSRC Ref: EP/N024672/1)

Funding: £980 k

Key partners: Uni. of Edinburgh,

Newcastle Uni. and Uni. of Sheffield

Project period: Oct. 2016 to Sept. 2019
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assisted 

regenerator
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Fig. 1 Illustration of compact CO2 capture system



Project III – EU ROLINCAP

Master• Project title: Systematic design and
testing of advanced rotating packed bed
process and phase change solvents for
intensified post-combustion CO2 capture
(ROLINCAP)

• Funder: EU H2020 Low Carbon Energy
Scheme

• Funding: €3.2 million
• Key Partners: CERTH (Greece), Imperial

College London (UK), Chalmers (Sweden),
Sheffield, NCL

• Project Period: Oct. 2016 to Sept. 2019
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Background

In conventional packed bed absorber using 30
wt% MEA, 15-30oC temp rise is expected
(Freguia and Rochelle, 2003)

Absorber inter-cooling improves their
performance by about 10% (Freguia and

Rochelle, 2003)

Absorber profile for conventional packed bed using 30 wt% MEA 
solvent (Freguia and Rochelle, 2003)



Benchmark solvent for RPB in Carbon Capture

In RPB absorber, stronger MEA solution (e.g. 70-80 wt%) is proposed to be used as the
benchmark solvent:

▪ More rapid kinetics, necessary due to reduced residence time

▪ Lower solvent flowrate

Based on experience from packed beds, there could be significant temperature rise in the
RPB with strong MEA as solvent but this has not been proven

▪ Existing RPB absorber rigs are designed to operate with differential loadings (∆𝛼) of
0.04- 0.1 mol CO2/mol MEA and do not show significant temperature rise except in
the sump

▪ With this ∆𝛼 basis, commercial scale flowrate will be high, the strength of the MEA
solution notwithstanding

▪ Inter-cooling will boost the performance of RPBs



Solvent flowrate requirements

Scale-up case study for solvent-based
capture from a 250 MWe CCGT power
plant:

▪ Solvent flowrate for 30 wt% MEA and
about ∆𝛼 of 0.2 mol CO2/mol MEA is
about 720 kg/s (Canepa et al., 2012)

▪ High flowrate at low ∆𝛼 for higher
concentration

✓ Higher solvent make-up rate

RPB absorbers should be designed to
achieve higher ∆𝛼 than currently
reported

Solvent flowrate for different conditions

The aim of this study:

▪ Investigate potential temperature rise for
CO2 absorption in different MEA wt%

▪ Propose design for RPB absorber inter-
cooler



Estimation of ΔH

▪Temp rise is mainly due to heat of absorption (ΔH)

▪ Existing ΔH data (obtain via calorimetric measurement for strong MEA solution):

✓ Only existing data is for 70 wt% MEA taken at 120oC (Kim et al., 2014)

✓ Data not suitable for absorber as they operate at much lower
temperature

▪ΔH estimated using Gibbs-Helmholtz relation:

𝜕ln 𝑝

𝜕
1
𝑇 𝑃

=
∆𝐻

𝑅

▪Involve predicting ΔH from solubility (VLE) data of CO2 in MEA solution



Estimation of ΔH

▪VLE data predicted using electrolyte NRTL model in Aspen Plus®

▪ The electrolyte NRTL model was regressed and validated with VLE data from literature
(Mason and Dodge, 1936; Aronu et al., 2011) to ensure they give good prediction especially for
strong MEA solutions

Model prediction for 45 wt% MEA solution with data from Aronu et al. (2011)



Estimation of ΔH

Model prediction for 74 wt% MEA solution with data from Aronu et al. (2011)

Model prediction for 60 wt% MEA solution with data from Aronu et al. (2011)



Estimation of ΔH

▪ Inherent inaccuracy due to numerical
differentiation, prediction error could be as
high as ±20% (Lee et al., 1974)

▪ Regardless, fairly good agreement
between predicted ΔH and measured values
from literature

▪ The trend is also similar to the reported
trend for 70 wt% (at T = 120oC) by Kim et
al. (2014)

▪ The trend also generally show that ΔH
remain fairly constant up to CO2 loading of
about 0.4 – 0.45 before it begins to decline
signifying the beginning of saturation
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Estimation of temperature rise (∆𝑇)s
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▪ Three hypothetic scenario involving 0.15, 0.2
and 0.25 respectively for ∆𝛼 was selected

▪ Physical properties (𝜌𝑠𝑜𝑙𝑛&𝐶𝑝,𝑠𝑜𝑙𝑛) are obtained
from Aspen Plus for different MEA
concentrations and loadings

▪ Temperature rise (∆𝑇) could be as high as
80oC in some cases

▪ For the given conditions (which is likely for up to

90% capture level), temperature rise for 70-80
wt% MEA solution is unacceptably high and
RPBs operating with this concentration of
MEA must be operated with inter-coolers
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RPB absorber model  

Master
▪ RPB absorber model developed 

in gPROMS and validated using 

data from Jassim (2002)

▪ Evaluated impact of temperature 

on: 

▪ Liquid phase MEACOO-

▪ Equilibrium partial pressure 

of CO2

▪ Mass transfer resistance

RPB absorber model validation for different cases from Jassim (2002)



MEACOO- Concentration

▪ Below loading of 0.5, CO2 exists 

mainly in the form MEACOO-

(Liquid speciation plot)

▪ Increasing temperature reduces 

MEACOO- indicating that 

absorption is gradually reversing

▪ This will reduce the absorption 

capacity of the solvent

Liquid phase MEACOO- concentration at a loading of 0.2 (left) and 
0.3 (right) for 55 and 73.2 wt% MEA solvent
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Equilibrium partial 
pressure of CO2 (PCO2)

▪ PCO2 increases with temperature

▪ Due to increasing liquid phase CO2 

concentration

▪ Tipping point above 340 K

▪ Reduces mass transfer gradient

▪ More significant as wt% MEA 

increases

Impact of temperature on equilibrium partial pressure
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Mass transfer resistance

▪ General mass transfer 

enhancement due to impact on 

reaction kinetics

Mass transfer resistance for different temperature and concentrations
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Design options for RPB intercoolerter

Option 1: Stationary intercooler

Design options: 

▪ Shell and tube design

▪ Plate and frame design



Design options for RPB intercoolerter

Option 2: Rotary intercooler (New design)

Cooling water channels incorporated 

within the RPB rotor



Shell and tube design 

▪ The tubes are assumed to be ¾ inch 

OD tubes

▪ Tube material is stainless steel

▪ 2-pass (split ring floating) 

configuration according to TEMA 

standard

▪ Sizing calculations based on 250 

MWe CCGT power plant 

𝐴 =
𝑄

𝑈𝐹𝑡∆𝑇𝑙𝑚

𝑄 = Heat duty
𝑈 = Overall heat transfer coefficient
𝐹﷮𝑡 = Temperature correction for ∆𝑇𝑙𝑚
∆𝑇𝑙𝑚 = Log mean temperature difference

𝑈 =
1

1
ℎ𝑠𝑜𝑙

+
𝑑𝑜 ln

𝑑𝑜
𝑑𝑖

2𝑘
+

1
ℎ𝑤

0

5

10

15

20

25

30

35

40

45

50

40 50 60 70 80

C
o

o
lin

g 
d

u
ty

 (
M

W
th

)

wt% MEA
0

100

200

300

400

500

600

40 50 60 70 80

C
o

o
lin

g 
w

at
e

r 
(k

g/
s)

wt% MEA



Shell and tube design 

▪ High heat transfer area

▪ Low pressure drop

0

50

100

150

200

250

300

0

1000

2000

3000

4000

5000

6000

7000

35 45 55 65 75 85

O
v
er

al
l 

h
ea

t 
tr

an
sf

er
 c

o
ef

fi
ci

en
t 

(W
/m

2
K

)

H
ea

t 
tr

an
sf

er
 a

re
a 

(m
2
)

WMEA (wt%)

Heat transfer area

Overall heat transfer

coefficient

0

2000

4000

6000

8000

10000

12000

35 45 55 65 75 85

Δ
P

 (
N

/m
2
)

WMEA (wt%)



Plate and frame design 

▪ Plate thickness of 0.50 mm

▪ Plate material is stainless 

steel

▪ Based on Alfa Laval design 

chart

Alfa Laval design chart (Haslego and Polley, 2002)



▪ Heat transfer area is 

significantly less

▪ Significantly higher 

pressure drop
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Estimated physical size

40 wt%

50 wt%

60 wt%

70 wt%

80 wt%
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Summary 

▪ Potential temperature rise is significant with strong MEA solution (70 wt% MEA)

▪ Intercoolers are therefore inevitable for expected capture levels to be achieved

▪ With Shell and tube design for intercoolers, physical sizes of the intercooler will 

be significantly huge

▪ Plate and frame designs will result to more compact intercoolers and are 

therefore preferred

Oko, E. Wang, M., Ramshaw (2017), Study of absorber intercooling in solvent-based CO2 capture based on rotating 

packed bed technology, 9th International Conference of Applied Energy, Cardiff, UK, will be published in Energy 

Procedia, Vol. 142, p3511-3516.



On-going work 

▪ Scale-up of RPB-based solvent-based capture process 

▪ 250 MWe CCGT power plant

▪ RPB absorbers to include inter-coolers

▪ Implementation of new RPB absorber design with intensified inter-cooler
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Thank you

For more information, contact:
Prof Meihong Wang
Chemical and Biological Engineering Dept
The University of Sheffield, UK
Tel.: +44 1142227160. E-mail address: Meihong.Wang@sheffield.ac.uk


