
Ramon Voncken, Ivo Roghair, Martin van Sint Annaland
Chemical process intensification – Multiphase reactors group

Process Intensification Network (PIN) Meeting, 

21 June 2017, Newcastle University.

TFM simulations of membrane-
assisted fluidized bed reactors for 
H2 production



Fluidized bed membrane reactors for H2
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 Motivation
• What are the advantages & challenges of FBMRs

 CFD: Two-Fluid modelling
• How to model hydrodynamics, extraction and reaction?

 Vertically inserted membranes
• Can we quantify the effect of concentration polarization?

 Horizontally inserted membranes
• What are the hydrodynamic effects of horizontal membranes?

 Reactive systems
• Can we intensify reactions by using membranes?

 Conclusions
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Motivation
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 H2 production contributes to about 2% of the global CO2 emissions , BUT….

 For H2-to-power and H2-to-transport: integrated CO2 capture in H2 plant required! 

 H2 production based on conventional steam methane reforming with CO2 capture 
results in large energy penalty 

Ambition: make H2 production more environmental friendly & less costly 
via Process Intensification

⇒



Conventional H2 production
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Steam methane reforming

CH4 + H2O ↔ CO + 3H2 ΔH°298K = +206 kJ/mol

CO + H2O ↔ CO2 + H2 ΔH°298K = -41 kJ/molInlet

Reaction section
Purification

Heat integration

Products

Products

– Many process units 
– Complicated heat integration
– Low carbon efficiency & CO2 capture not integrated



• Use perm-selective membranes to extract H2 product
(obtain directly ultra-pure H2 & shift equilibrium for complete CH4

conversion)
• Auto thermal operation via integration with CH4 or H2 combustion
• Intrinsic CO2 capture

Membrane
reactor

Steam

Conventional fuels

Hydrogen

Steam + CO2

Energy

Intensification by integration into a single apparatus:

Membrane reactor concept:

Membrane reactors for H2 production
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Multiple concepts
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The oxygen can be supplied 
via a membrane…

…or via a circulating metal 
oxygen carrier (eg. Ni-NiO)



Why use fluidized bed membrane reactors?

Great mixing, no 
temperature profiles
Reduced pressure drops
No internal mass transfer 

limitations
Decreased concentration 

polarization
Synergy between 

membranes and FBR

X Better sealing solutions
X Durability of membranes
X Membranes need better 

resistance against 
impurities

X Largely unknown 
interaction between 
membranes and FBR
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Two-Fluid Modelling
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Two-Fluid Model
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≈
KTGF

Collisional Transport

Kinetic Transport

 Use CFD models to simulate detailed hydrodynamics, 
mass transfer and reactions in FBMRs

 OpenFOAM Two-Fluid Model:
− Free open source CFD code
− Complex 3D geometries (membranes)

 Model has been extended, validated and verified
H2 + N2
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Two-Fluid Model
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Granular temperature equations: Solids rheology

Random fluctuating 
velocity of particles
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and frictional

Momentum 
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Two-Fluid Model
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Species balance:H2 extraction

Boundary conditions:
 Partial slip for particles

 No slip for gas phase on walls

 Momentum extraction of gas via membrane m
SRTu pM=

H2 + N2
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SMR: CH4 + H2O         CO + 3 H2

Kinetics

Kinetics
 Numaguchi & Kikuchi (1988)
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Summary: modelling of membrane FB reactors

Fluidized bed membrane reactors have significant advantages 
for hydrogen production over conventional technologies

A Two-Fluid Model was developed to perform detailed 
hydrodynamics and mass transfer studies
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Vertically inserted membranes
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What is concentration polarization (and why do we care)?

“Bed-to-membrane mass transfer limitations”
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Quantification of concentration polarization

 Experiments in FBMR with 1 membrane
 Concentration profiles obtained from 2D TFM simulations to estimate 

thickness of mass transfer boundary layer
 Include boundary layer resistance to 1D phenomenological model

Chemical Engineering and Chemistry Page 1619-7-2017
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Using TFM results to improve 1D model
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TFM simulations 3D

 Clear build up of a 
mass transfer boundary

 Some fluctuations induced 
by bubbles passing by

 Average thickness of the 
mass transfer boundary 
for the considered case 
estimated at 1 cm 

Vertically inserted membranes
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Summary: vertical membranes

Concentration polarization emerges due to 
very high-flux membranes!

We can quantify the concentration boundary layer thickness with 
TFM in order to improve phenomenological models
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Horizontally inserted membranes
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Horizontally inserted membranes

(bed width: 30 cm)
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Gas pockets: zoomed in

 Gas pockets
- ‘Attached’ to membrane 
- Contain very little amount of solids
- May cause mass transfer limitations

 Main mass transfer limitations are 
on top of the membranes case by 
densified (defluidized) zones

 Gas pockets and densified zones 
mostly at membranes near walls
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Gas pockets: overview

Effect of gas pockets
and densified zones 

mainly for membranes
close to the wall
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Wall vs. centre membranes: radial flux profile
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⇒



Putting it all together
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Membrane configurations

Wall membranes present

Wall membranes removed

Inactive tubes near walls
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Bubble cutting by membrane tube banks

27

 No hydrodynamic effect from removal of membranes near walls or 
addition of inactive wall tubes

 More membranes in tube bank = more small bubbles
 Slower increase in bubble diameter with more membranes
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Summary: horizontal membranes

When placing membranes horizontally in the fluidized bed, gas 
pockets and densified zones occur around them

Horizontal membranes placed near the reactor walls perform 
worse due to densified zones and gas back-mixing

Membrane tube banks in fluidized beds significantly cut gas 
bubbles
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Reactive systems

Multiphase Reactors Group, SPI Page 2919-7-2017



Simulation settings

Quantity Value Unit 
dp 250  μm 
ρp 1700  kg/m3 
epp, epw 0.97 - 
u/umf 3 - 
D 1.0.10-4  m2/s 
Qpd 4.3.10-3  mol/(m2sPan) 
n 0.50 - 
T 678 K 
XH2 0.1 - 
XCH4 0.1 - 
XH2O 0.35 - 
XCO 0.35 - 
XCO2 0.1 - 
ωcat 0.10 - 
poutlet 3  bar 
pperm 0.01.105 Pa 
tsim 10 s 
∆t 5.10-6 s 
 

 Compare system without membranes 
and with vertical and horizontally 
immersed membranes

 Bubbling fluidization regime
 Simulations were performed at 

laboratory pressures
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H2 production and extraction

31

 Increased reaction rates near membranes
 Reaction shifts further away from equilibrium
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H2 production and extraction
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 Densified zones and gas pockets around membrane
 Significant effect on reaction rate



Summary: reactive systems

Extraction of hydrogen via membranes shifts the equilibrium 
towards the product size and increases the reaction rates

Densified zones and gas pockets around horizontally immersed 
membranes affect the local reaction rates
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Outlook and conclusions
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MA-CLR concept: solids conversion 
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Parallel simulations with OpenFOAM

• Most simulations were run with 6 cores
• Scotch algorithm minimization of communication between processors
• Simulations performed on HPC and workstation computers
• Parallel efficiency (~350k cells) measured on SurfSara cluster, 

Amsterdam
• Infiniband
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High-pressure fluidization

38

1 bar 2 bar 10 bar 20 bar 50 bar 100 bar
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Complex geometries and full 3D simulations

39

 3D cylindrical lab-scale FBMRS
 Single membrane, multiple 

membranes
 Quantify boundary layer
 Add horizontal tubes, change inlet 

flow conditions
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Take home messages

Fluidized bed membrane reactors have significant advantages 
for hydrogen production over conventional technologies

From CFD to phenomenological; the TFM can greatly improve a 
1D model by accounting for concentration polarization

Horizontal membranes at the walls are a waste; in the center they 
have higher fluxes and help cutting the bubbles!

Membranes help to speed-up equilibrium reactions
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