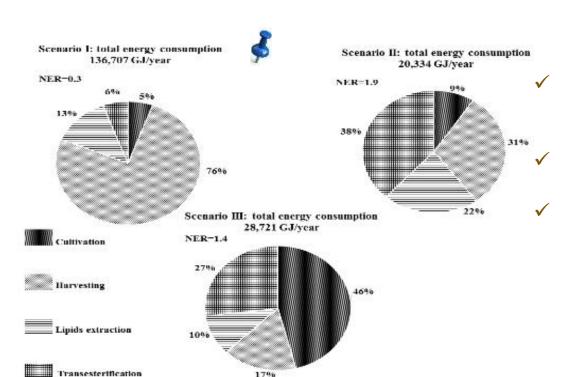


OZOFLOTATION FOR MICROALGAE HARVESTING FROM WASTEWATER

Velasquez Orta S.B., Monje-Ramirez I, Harvey A, Orta Ledesma MT. 21ST June, 2017


Researchers:

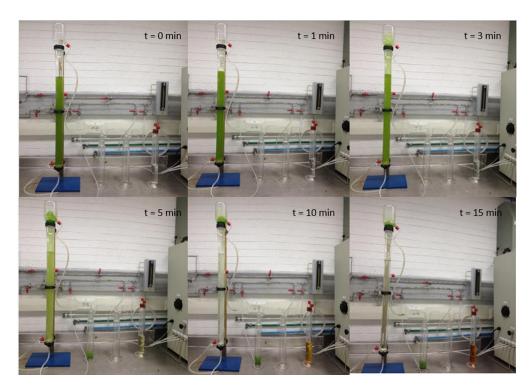
- Dr. Kamoru Salam
- MEng. Reina Garcia-Estrada

OZOFLOTATION FOR MICROALGAE HARVESTING

Microalgae require several process stages to be transformed into biodiesel Wastewater is a favourable option for cultivation If wastewater is used for cultivation, harvesting and lipid extraction+transesterification are the most energy intensive

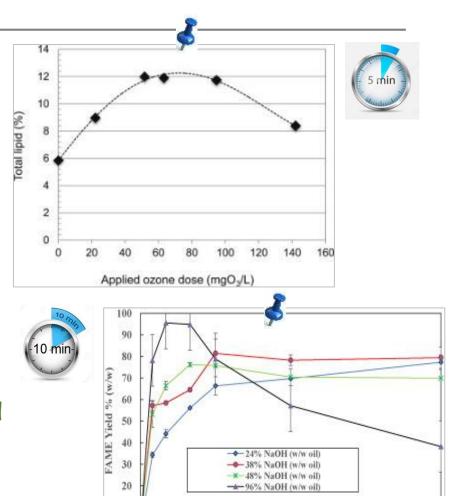
Aim

To decrease the processing time of transforming microalgae to biodiesel by evaluating rapid ways of microalgae harvesting and biomass to FAME conversion.



OZOFLOTATION OF SCENEDESMUS GROWN IN WASTEWATER

Ozone-flotation tests were carried out based on a design of experiments 33, composed of three variables and three levels per variable: O3 concentration in the gas phase: 10, 20 and 30 mg/L; time ozone-flotation: 5, 10 and 15 min, and initial concentration of microalgal biomass: 300, 500 and 700 mg TSS/L).



Universidad Nacional Autonoma de Mexico, UNAM

RESULTS

Highlights:

- Ozoflotation was able to harvest
 79.6% of microalgae in 5 min doubling the amount of extracted lipids.
- A high FAME yield of 96% was obtained after 10 min when using an alkaline catalyst despite high levels of FFA (6%) and water content up to 30%.
- A positive NER of 1.8 can be achieved when using algae species cultivated in wastewater and harvested by ozoflotation

10

In situ transesterification time (h)

1.5

PUBLICATIONS

Publications

- Kamoru A, Velasquez Orta S., Harvey A., 2016 <u>Kinetics of fast alkali</u> <u>reactive extraction/ in situ transesterification of Chlorella vulgaris</u>. Fuel Processing Technology:144, 212-219
- Velasquez-Orta SB, Garcia-Estrada R, Monje-Ramirez I, Harvey A, Orta Ledesma MT. 2014, <u>Microalgae harvesting using ozoflotation</u>: <u>Effect on lipid and FAME recoveries</u>. Biomass and Bioenergy:70, 356-363



Home | About the Project | Description | Publications | Thesis developed | Related Sites | Work Team | Results | Contact & Credits

Novel pilot-scale system for wastewater/leachate treatment and carbon dioxide capture using a microalgae and ozoflotación. (ATZINTLI).

Inadequate sewage treatment and its negative impact upon health, the economy and environment poses a significant challenge for Mexico. This is recognized by government as

http://proyectos.iingen.unam.mx/atzintli/en-us/Pages/default.aspx