

Mass Transfer Enhancement as a Function of Oscillatory Baffled Reactor's Design

Safaa Ahmed^{*}, Anh Phan, Adam Harvey

Bubble column

Advantages:

- \checkmark Good heat and mass transfer
- \checkmark no moving parts
- \checkmark ease of operation
- \checkmark low operating and maintenance costs.

Disadvantages:

- Controlling the bubble/drop size distribution
- Product quality
- Scale up

Oscillatory Baffled Reactor (OBR)

Oscillatory Baffled Reactor (OBR)

Dimensionless groups

f is the oscillation frequency (Hz) *xo* is the oscillation amplitude (mm)

Devices and Methods

Flow visualisation

Oscillatory helical baffled reactor (OHBR)

Oscillatory integral baffled reactor (OBR-SPC)

Oscillatory single-orifice baffled reactor (OSOBR)

Oscillatory multi-orifice baffled reactor (OMOBR)

Quantitative results $(k_L a)$

without oscillation

with oscillation (6mm, 8Hz)

Thank you