Absorption of CO₂ from a simulated flue gas using a rotating packed bed.

Dr Jonathan Lee, Dr Pierrot Attidekou, Tolu Kolawole, James Hendry

School of Chemical Engineering and Advanced Materials Newcastle University

Talk Outline

- Carbon Capture from CCGT power plant
- Process intensification technologies
- Proposed solution
- Absorber mass transfer studies
- Rotating packed bed size estimates
- Future work

250 MWe CCGT Power Plant

The Problem (250 MWe Gas Turbine)

Rotating Packed Bed

Rotating Packed Bed (RPB)

- High though put in a small volume.
- Diameters 0.2 4.0 m.
- 20 750 times gravitational acceleration.
- Rate of mass transfer 10⁻¹ kmols m³ s⁻¹ (HTU≈cm)
- Residence times of 1-10 s.
- Pressure gradient ≈ 500 Pa m⁻¹

Rotating Packed Bed

Increase MEA concentration from 30-70wt%

- Reduction in the liquid flows.
- Column diameters and heat exchanger sizes are reduced.
- Viscosity of the amine solution is increased.

$$\frac{\left(k_{L}a\right)_{m_{2}}}{\left(k_{L}a\right)_{m_{1}}} = 0.88 \overset{\text{a}}{\text{c}} \frac{m_{1}}{m_{2}} \overset{\text{i}}{\overset{\text{o}}{\text{o}}}^{0.83} \text{ packed column} \qquad \frac{\left(k_{L}a\right)_{m_{2}}}{\left(k_{L}a\right)_{m_{1}}} = 0.91 \overset{\text{a}}{\text{c}} \frac{m_{1}}{m_{2}} \overset{\text{o}}{\overset{\text{o}}{\text{o}}}^{0.27} \text{ RPB}$$

Chen 2006

30wt% MEA μ_1 = 3 mPa s 70wt% MEA μ_2 = 16 mPa s

$$\frac{\left(k_{L}a\right)}{\left(k_{L}a\right)_{30wt\%}} = 0.22 \text{ packed column}$$

$$\frac{\left(k_{L}a\right)}{\left(k_{L}a\right)_{30wt\%}^{70wt\%}} = 0.58 \quad \mathsf{RPB}$$

Chen Y, Fang-Yi L, Clifford Y T, Hwai-Shen L, 2006, "Packing Characteristics for Mass Transfer in a Rotating Packed Bed", *Ind Eng Chem Res*, 45, 6846-6853

Spinning Disc Heat Transfer

Spinning Disc

- Extremely thin films (typically 50-500 µm thick)
- Excellent mixing characteristics due to high shear and surface waves.
- Rates of heat and mass transfer are very high.
- Convective heat transfer coefficient
 > 10 kW m⁻² °C⁻¹
- Higher values for heat transfer during boiling/condensation.

Process Intensification

Pictures from www.heatric.com

Compact Heat Exchangers

- Heat exchange area/unit volume of up to 1300 m² m⁻³.
 - Shell and tube: 100 m² m⁻³.
 - Plate and frame: 400 m² m⁻³.
- Convective heat transfer coefficient for liquid duty 7-10 kW m⁻² °C⁻¹

Proposed Solution

- Consortium of Imperial College, Newcastle University and Sheffield University are studying the intensification of post combustion carbon capture (EPSRC EP/M001458/1)
- Use rotating packed beds to reduce the size of mass transfer elements.
- Use spinning discs for boiling heat transfer for the regeneration column reboiler.
- Use compact heat exchangers for the rich amine preheater and lean amine cooler.

Proposed Solution

Packing is stacked sheets of stainless steel mesh ($a_P = 694 \text{ m}^2/\text{m}^3$, $\epsilon = 0.84$)

- RPB
 - 300 mm outer diameter
 - 80 mm inner diameter
 - Axial length 20 mm
 - 600 1450 rpm
- Measurements
 - Inlet and outlet CO₂ concentration in the air.
 - Inlet and outlet loading of the solvent.
 - Pressure drop between the inlet and outlet gas.
 - Power consumption.
 - Liquid and gas temperatures.

Experimental data presented in terms of CO₂ penetration defined as follows:

%) CO₂ removal efficiency=
$$\left(\frac{y_{CO_{2,in}} - y_{CO_{2,out}}}{y_{CO_{2,in}}}\right) X \, 100$$
 (1)

Calculation of $K_G a$

The number of transfer units (NTU) was calculated assuming the CO₂ concentration in the liquid phase was zero:

$$NTU_{OG} = \int_{y_1}^{y_2} \frac{dy}{y - y^*} = \ln\left(\frac{y_{CO_{2,in}}}{y_{CO_{2,out}}}\right)$$
(2)

Overall gas-phase mass transfer coefficient:

$$K_G a_e = \frac{Q_G}{\pi (r_o^2 - r_i^2) Z} NT U_{OG}$$
 (3)

30% MEA L/G = 2.7
30% MEA L/G = 3.1
30% MEA L/G = 3.5
50% MEA L/G = 1.8
50% MEA L/G = 2.1
50% MEA L/G = 2.1
50% MEA L/G = 1.3
70% MEA L/G = 1.5
70% MEA L/G = 1.7

^{25&}lt;sup>th</sup> Pin Meeting, 21st June 2017

Rotating Packed Bed Size Estimates

- Use the experimental data and correlations from literature to estimate the size of RPB required to capture 90% of the CO₂ from gas turbine exhaust gases for a 250 MW_e unit:
- Assumptions:
 - Use mono ethanolamine with an amine:CO₂ molar ratio of 4:1
 - Solvent feed contains 0.1 moles CO₂ per mole amine
 - Rotational speed = 100 rpm
 - Liquid feed jet velocity = 4 m s⁻¹
 - Power calculation based on the K.E. of the liquid leaving the tip of the RPB

$$P=rac{1}{8}\dot{m_{liq}}\omega^2{D_O}^2$$

- Packing: $a_P = 694 \text{ m}^2 \text{ m}^{-3}$, $\epsilon = 0.84$
- K_Ga values are constant

Rotating Packed Bed Size Estimates

Amine strength	(L/G) _{mass}	D _i ⁽¹⁾ (m)	Z ⁽²⁾ (m)	K _G a (s⁻¹)	D _o (m)	Power (MW)
30 mass%	2.7	3.1	4.8	2.1	10.2	1.4
50 mass%	1.6	3.1	4.2	3.9	8.3	0.6
70 mass%	1.2	3.1	3.9	4.7	7.9	0.4
90 mass%	0.9	3.1	3.7	5.2	7.7	0.3

- The inner diameter is based on a gas velocity limit to ensure no entrainment of the liquid jets feeding the packed bed: Agarwal L, Pavani V, Rao D P, Kaistha N, 2010, "Process Intensification in HiGee Absorption and Distillation: Design Procedure and Applications", *Industrial and Engineering Chemistry Research*, 49, 10046-10058.
- 2. The axial length is estimated using a Jassim's flooding correlation: Jassim M S, Rochelle G, Eimer D, Ramshaw C, 2007, "Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed", *Industrial and Engineering Chemistry Research*, **46**, 2823-2833.

Rotating Packed Bed Size Estimates

30 mass% amine $m_{feed} = 1021 \text{ kg s}^{-1}$ P = 101300 PaT = 393 KComposition: $6.6 \text{ mass}\% \text{ CO}_2$ 28 mass% MEA $65 \text{ mass}\% \text{ H}_2\text{O}$

- Assumptions:
 - Solvent loading reduced from 0.33 to 0.10 moles CO₂ per mole amine
 - Use 1.8 kg steam at 4.5 barg per kg CO₂ in the feed
 - Rotational speed = 100 rpm
 - Liquid feed jet velocity = 4 m s⁻¹
 - Power estimate based on the K.E. of the liquid leaving the tip of the RPB
 - Packing: $a_P = 694 \text{ m}^2 \text{ m}^{-3}$, $\epsilon = 0.84$
 - K_La values are constant

Amine strength	(L/G) _{mass}	D _i ⁽¹⁾ (m)	Z ⁽²⁾ (m)	K _L a (s ⁻¹)	D _o (m)	Power (MW)
30 mass%	7.9	2.2	5.4	0.011	5.3	0.4

Estimates based on liquid side mass transfer data from: Cheng HH, Lai CC, Tan CS, 2013, "Thermal regeneration of alkanolamine solutions in a rotating packed bed", *International Journal of Greenhouse Gas Control*, **16**, 206-216

Future Work

- Co-current and cross flow absorption measurements.
- Combined reboiler and regenerator

Acknowledgements

- Prof. Meihong Wang from University of Sheffield for data on 250 MWe plant.
- Organizations who support our RPB work

Department for Business, Energy & Industrial Strategy EPSRC

Engineering and Physical Sciences Research Council

European Commission

Thank you for your attention.

Any questions?

RPB Flow Patterns

