

Fouling/Scaling/Caking during Heat and Mass Transfer

Akhilesh Kumar Srivastava Senior Scientist

24th PROCESS INTENSIFICATION NETWORK MEETING

21 June, 2016. The Beehive, Newcastle University

Tel-Tek is a Norwegian R&D institute with focus on more efficient production processes and reduced emissions

Competence areas

- Pneumatic transport, cyclones, fluidized bed
- ✓ Silo Design
- ✓ CO₂ capture technology and CCS system solutions
- ✓ Design of process units
- Software development within process efficiency
- ✓ Smart Manufacturing
- ✓ Flow technology/CFD
- ✓ Process simulations
- Environmental evaluations (e.g. climate, waste, environmental aspects with CCS)
- ✓ Bio energy from waste
 ✓ Low Carbon Economy

Key figures

✓ Established:

- ✓ Turnover (2015): 31 MNOK
- ✓ Employees: 30 (24 MY)
- 1986

Values

- ✓ Robust
- ✓ Generous
- ✓ Enthusiastic
- ✓ Knowledge building

Effective processes for a climate friendly future

Powder technology

- Transport
- Storage
- Handling
- Separation
- Characterization

Energy

- CO₂ capture combined with bioenergy
- Biogas
- Combustion and environment
- Modelling and flow
- Energy effective processes
- Calculation of costoptimal energy utilization

- Post-combustion capture technology
- CO₂ transport and infrastructure
- Degradation of amines
- Early phase cost estimation
- Solutions for energy-producing and energyintensive industry
- CO₂-lab

Smart Manufacturing

- Multivariate
 - analysis/diagnostics
 - modelling
 - simulation
 - optimization
- Understanding/ hypothesis
- Verification
- Implementation

* Carbon capture and storage

3

Ongoing projects:

- Improving Efficiency of Offshore Drill-cuttings Handling Process"; NFR- PETROMAKS II- 2014ongoing; € 2,000,000.
- Effective Handling of Bulk Solids with Focus on Reduction of Erosion and Scale Formation;
 € 2,000,000
- Intensified by Design[®] for the intensification of processes involving solids handling"; EU H2020-SPIRE-2015; 2015- ongoing; €500,000

Key Areas:

- Oil & Gas- bulk handling
- Offshore applications
- Food & Feed industry-
- Mineral processing-
- Shipping- bulk transfer systems
- Pharmaceutical-
- Solar-cell industry- handling of solar grade Si
- Polyethylene-

Intensified by Design® for the intensification of processes involving solids handling

Project reference: 680565 Funded under: H2020-EU.2.1.5., H2020-EU.2.1.5.3.

Topic: SPIRE-08-2015 - Solids handling for intensified process technology Call for Proposal: H2020 - SPIRE

PI Modules

Fouling remediation strategies for the built-in PI modules

Fouling/Scaling/Caking

- Heat Exchangers
- Powder Storage
- Separation
 - gas solid, solid-solid, liquid-solid (cyclones, spray dryers etc.)
- Mixing

- Blending
- Transportation
- Comminution (Milling)
- Synthesis of Nanoparticles
-

Pictures from:

(1) Understanding powder caking By Tim Freeman, Freeman Technology (http://powderinfonews.com/tema-artikler/understanding-powder-caking/)

(2) Modern electronic solutions offer a safe, easy alternative to chemical or physical descaling methods. By Jan de Baat Doelman, Scalewatcher North America, Inc. (https://www.maintenancetechnology.com/2013/06/controlling-limescale-deposits-and-industrial-fouling/)

Disadvantages

- Poor powder flow
- Blockage of the storage tank
- Increased resistance to heat transfer (reduced thermal exchange capacity of the equipment)
- Decreased efficiency (production, separation etc.).
- Decreased throughput and cost efficiency
- Increased erosion of equipment surfaces
- - Increased pressure drop
- •

Industries affected by fouling

- Chemical Industry
- Refinery Process
- Food Processing
- Minerals
- Metallurgical
- Ceramics
- Pharmaceutical and Bio Processing
- Water Systems
- Pulp and Paper Industry
- Power Generation/Cogeneration
- Fireside Fouling
- Refrigerants
- Chilled Media
- Waste Heat and Energy Recovery

Types of heat

- exchangers • Shell and Tube
- Plate and Frame Heat Exchangers
- Spiral Heat Exchangers
- Compact Heat Exchangers (Printedcircuit heat exchangers, Brazed plate heat exchangers, Welded plateand-frame etc.).
- Evaporative Coolers
- Direct Contact Heat Transfer
- Boilers
- Air Cooled Heat exchangers
- Water Cooled Tubular Condensers
- Agitated Vessels
- Furnace and Air Preheaters
- Scraped Surface Heat Exchangers
- Spinning disc heat exchangers

Epstein's 5x5 matrix: Categories and sequential events of fouling

	Precipitation	Particulate	Chemical Reaction	Corrosion	Biological
Initiation	М			L	
Transport	М	М	М	М	М
Attachment	М			L	
Removal	М			L	
Aging	L	L	L	L	L

M – Received most attention, L- received least attention

In addition to Epstein matrix, some other categories of fouling can also be included, e.g, crystallization & scale formation and freezing fouling.

Source:

- N. Epstein, Heat Transfer Engineering, vol. 4, p. 43, 1983
- J. G. Knudsen, "Analysis of the fouling process," in Fouling in Heat Exchangers, Beggel House, Inc., 1999, pp. 3.17.3-1.

Analysis

Condensation of moisture Moisture Migration Consolidated Pressure

Critical during Powder Storage

Particle-Particle and Particle Wall Forces

- Lifshitz- vander Walls Forces
- Capillary Forces
- Electrostatic Forces
- •

Transport Mechanisms

- Diffusion
- Electrophoresis
- Thermophoresis
- Sedimentation

•

Parameters affecting Fouling

tel·tek

	Size		
	Shape		
	Size distribution		
	Hardness		
	Chemical composition (elements)		
	Surface chemistry		
	Crystal structure		
	Hygroscopy		
	Moisture content		
Powder properties	Roughness		
	Density		
	Surface area		
	Porosity		
	Solubility		
	Solubility with temperature		
	Electrical/Magnetic/Thermal properties		
	Flow rate		
	Corrosive behaviour		
	Rheological properties (viscosity)		
	Zeta Potential		
	Chemical composition		
	Flow rate		
	Density		
Properties of fluids	Temperature		
	Rheological properties (viscosity)		
	Variation of Viscosity with temperature		
	Corrosive behaviour		
	Geometry and orientation of the surface		
	Materials properties (alloy composition etc.)		
Surface properties	Temperature		
	Electrical/Magnetic/Thermal properties		
	Tribological properties (erosion, corrosion etc.)		
	Temperature (constant, cycle)		
Environmental conditions	Relative humidity		
	Consolidating pressure		

Mitigation

- Modified ambient conditions
- Modified process parameters
- Design considerations
- Chemical Methods (chemical additives)
- Mechanical Methods (mechanical vibration of the heat transfer surfaces etc.)
- Coating of surfaces
- Stabilization of colloids

RELPOWFLO V

International Symposium

Reliable Flow of Particulate Solids V (RELPOWFLO V)

13th-15th June 2017 in Skien, Norway

www.relpowflo.no