

Temperature Stabilisation in Fischer-Tropsch Reactors using Phase Change Materials (PCM)

Ademola Odunsi

Chemical and Process Engineering (IMPEE)

(Dr T.S. O'Donovan and Professor D. A. Reay)

22nd Process Intensification Network (PIN) 21 May 2014, Newcastle University, Newcastle Upon Tyne

Presentation Outline

- Background
- Research Objective
- Phase Change Materials(PCM)/PCM in Chemical Reactors
- Methodology and Mathematical Modelling
- Results and Discussion
- Conclusions and Future work

Background

- Conventional forms of energy are becoming increasingly scarce
- About US\$100boe (~ 4.5 trillion MJ energy; ~265 MMt CO₂) was wasted through flared gas in 2011 and approximately7000tscf remained stranded globally as at 2011. ^(1,2)
- Small scale (<20bbl/day) reactors/mobile bio-refineries for production of ondemand, synthetic liquid fuels from diverse, under-utilised, local resources (including biomass) is fast becoming an emerging development area.
- The Fischer-Tropsch Synthesis (FTS) is one of the favoured Gas-to-Liquid (GTL) technologies. Its high exothermicity and sensitivity of product selectivity to temperature constitute the main challenge in FT reactor design.
- Phase Change Materials (PCM) in conjunction with traditional cooling systems is proposed as a means of intensifying and improving heat transport.

^{1. &}lt;u>www.bp.com/content/dam/pdf/Statistical-Review-2012</u>

^{2. &}lt;u>www.worldbank.org/en/news/2012/07/03world-bank-sees-warning-sign-gas-flaring-increase</u>

Objectives

- Brief introduction to the Fischer-Tropsch Synthesis (FTS)
- Examine the concept of intensifying the heat transport system and regulation the temperature of a fixed bed FT reactor using phase change material (PCM). As well, to consider the effect of this increased temperature control on the spectrum of products emerging from the reactor
- Present a 2D-pseudo-homogeneous , steady state mathematical model and findings

Fischer Tropsch Synthesis

- Refers to the aggregate of simultaneous, surface polymerisation reactions, occurring in-situ active catalyst sites (Ni, Fe, Co, Ru) to produce hydrocarbons from molecules of CO and H₂ (synthesis gas). Low Temperature FT (~200-250°C) and High Temperature FT (~300-350°C)
- Carbide mechanism: Dissociative adsorption of H₂ and CO

Process Flow Diagram

Ideal Anderson-Schluz-Flory (ASF) distribution

$$x_n = (1 - \alpha) \times \alpha^{n-1}$$

Fixed Bed Reactor (FBR)

Effects of Process Conditions

	Chain growth	Olefin/paraffin	Carbon	Methane
	probability	ratio	deposition	selectivity
Temperature \uparrow	\downarrow	\downarrow	\uparrow	\uparrow
Pressure ↑	\uparrow	*	*	\downarrow
H ₂ /CO ratio \uparrow	\downarrow	\downarrow	\downarrow	\uparrow
Conversion \uparrow	*	\downarrow	\uparrow	\uparrow
Space velocity \uparrow	*	\uparrow	*	\downarrow

 \uparrow increases \downarrow decreases * Complex relationship

Note: Temperature increase affects process adversely on all fronts.

Phase Change Material (PCM)

- Provides an isothermal sink into which the enthalpy of reaction can be dissipated
- The melting-solidification cycles, **with enthalpy of fusion at constant temperature**, cause the PCM to act as an energy storage buffer/ thermal flywheel, mitigating temperature excursions
- PCM chosen so that phase transition temperature lies between maximum nominal temperature and maximum safe operating temperature
- Micro-encapsulated to prevent contamination or agglomeration. Micro-nano-size ensures rapid melting and mitigation of thermal runaway.
- Works as part of a hierarchical cooling system of control to produce **rapid response to temperature rise**.
- Packed closely with catalyst in a fixed bed to act as a distributed controller.

PCM in Chemical Reactors

Kinetics and Thermo-chemistry

• Generic FTS:

$$CO + 2H_2 = (-CH_2 -) + H_2O$$
 $\Delta_R H_{298K}^{\theta} = -152 \frac{kJ}{mol}$

$$r_{m,H_2,FT} = -\frac{k_{m,H_2,eff,FT}}{1+1.6\frac{c_{H_2O}}{c_{CO}}} \cdot c_{H_{2,g}}$$

• Methane synthesis:

$$CO + 3H_2 = CH_4 + H_2O$$
 $\Delta_R H_{298K}^{\theta} = -206 \frac{kJ}{mol}$

$$r_{m,H_2,M} = -k_{m,H_2,eff,M} \cdot c_{H_{2,g}}$$

• Water-gas-shift reaction:

$$CO + H_2O = CO_2 + H_2 \qquad \qquad \Delta_R H_{298K}^{\theta} = -41 \frac{kJ}{mol}$$

$$r_{m,H_2,WGS} = -k_{m,H_2,eff,WGS} \cdot c_{H_2O_g}$$

Mathematical model (I)

• Material Balance:

$$\begin{split} \rho_{f} u_{s} \cdot \frac{\partial w_{j}^{f}}{\partial z} &= -\rho_{f} \cdot w_{j} \cdot \frac{\partial u_{s}}{\partial z} - w_{j} u_{s} \cdot \frac{\partial \rho_{f}}{\partial z} \\ &+ D_{er} \cdot \left(\frac{\partial \rho_{f}}{\partial r} \cdot \frac{\partial w_{j}^{f}}{\partial r} + \frac{\rho_{f}}{r} \cdot \frac{\partial w_{j}^{f}}{\partial r} + \rho_{f} \cdot \frac{\partial^{2} w_{j}^{f}}{\partial r^{2}} \right) + r_{j} M_{j} \cdot \rho_{\delta}^{cat} \end{split}$$

• Energy Balance:

$$\begin{split} \rho_{T} u_{s} \cdot C_{p}^{T} \frac{\partial T^{T}}{\partial z} &= \kappa_{er} \cdot (\frac{1}{r} \cdot \frac{\partial T^{T}}{\partial r} + \frac{\partial^{2} T^{T}}{\partial r}) \\ &- \rho_{b}^{eee} \cdot \sum r_{i} \cdot (\Delta_{\pi} H_{i}) \Big| \end{split}$$

Whence,

$$\sum r_{i} (\Delta_{R}H_{i}) = r_{m,H_{2},FT} (\Delta_{R}H_{FT}) + r_{m,H_{2},M} (\Delta_{R}H_{M}) + r_{m,H_{2},WGS} (\Delta_{R}H_{WGS}) - r_{PCM} (\Delta_{fus}H_{PCM})$$

Mathematical model (II)

• Ergun's equation (Momentum Balance):

$$(\frac{\rho D_{\mathbf{P}}}{G^2}).(\frac{\varepsilon^3}{1-\varepsilon})\frac{dP}{dz} = 150.\frac{(1-\varepsilon)}{(\frac{D_{\mathbf{P}}.G}{\mu})} + 1.75$$

• Ideal gas EOS:

Type equation here.

$$\frac{\partial \rho_f}{\partial z} = \frac{MW}{R} \cdot \left(\frac{1}{T^f} \cdot \frac{\partial P}{\partial z} - \frac{P}{(T^f)^2} \cdot \frac{\partial T^f}{\partial z}\right)$$

• Effective Heat Capacity:

$$C_{p(PCM)} = \begin{cases} C_{p(PCM)s} & T < T_m \\ C_{p(PCM)s} + \frac{\Delta_{fus}H}{\Delta T} & T_m \le T \le (T_m + \Delta T) \\ C_{p(PCM)l} & T > (T_m + \Delta T) \end{cases}$$

Mathematical model (II)

• Temperature dependent properties of PCM (melt fraction: $0 \le \phi \le 1$):

$$\kappa_{PCM}(T) = \kappa_{PCM,s}(1-\varphi) + \kappa_{PCM,1} \times \varphi$$
$$\rho_{PCM}(T) = \rho_{PCM,s}(1-\varphi) + \rho_{PCM,1} \times \varphi$$

• Pseudo-homogeneous fluid-catalyst-PCM system (ω = weight fraction of PCM):

$$\kappa_{f,cat,PCM} = \frac{1}{(\omega+1)} \kappa_{f,cat} + \frac{\omega}{(\omega+1)} \kappa_{PCM}(T)$$

$$\rho_{f,cat,PCM} = \frac{1}{(\omega+1)} \cdot \rho_{f,cat} + \frac{\omega}{(\omega+1)} \cdot \rho_{PCM}(T)$$

$$C_{p_{f,cat},PCM} = \frac{1}{(\omega+1)} C_{p_{f,cat}} + \frac{\omega}{(\omega+1)} C_{p_{PCM}}(T)$$

- **Results**
- All data taken from and verified against modelling/experimental work of Jess and Kern (2009)

Jess A., Kern C. Modelling of Multi-tubular Reactors for Fischer-Tropsch Synthesis Chemical Engineering Technology 2009

Results

• Effect of varying inlet temperature

Non-PCM regulated reactor

PCM regulated reactor

Results

• Effect of varied inlet temperature on methane productivity

Non-PCM regulated reactor

PCM regulated reactor

Results

• Effect of varied inlet temperature on C5+ productivity

Non-PCM regulated reactor

PCM regulated reactor

Conclusion

- 2D pseudo-homogeneous, steady state model has been presented
- The concept of PCM in reactors (FT) has been examined
- The delay in temperature rise of PCM keeps the reaction bed within a narrow optimum temperature range and thus maintains a desirable product selectivity window
- The potential, rapid-response, distributed control capabilities of the PCM can be seen. Potential tuning parameters include mass fraction, melt time, etc.
- Catalyst supports in future may be impregnated with PCM to act as a temperature control buffer
- Future work will involve optimisation and experimentation.

Thanks for your attention.

Reaction Modelling Parameters

Table 2: FTS data at 513K and 2400kPa used in modelling reactor [1]

Parameter	Value
Superficial gas velocity, u_3	0.55 m s ¹
Diam eter of catalyst particle, D_p	3 m m
Totalm olar gas concentration, <i>pmol</i>	563 m olm ⁻³
Length of tubes	12 m
Internal tube diam eter	12.8mm
H2:CO ratio in syngas	2
Kinem atic viscosity of feed gas, vgas	$4 \times 10^{-6} \mathrm{m}^{2} \mathrm{s}^{-1}$
Therm al conductivity of gas mixture xgas	0.16Wm ⁻¹ K ⁻¹
Effective radial therm al conductivity, κ_{er}	6.3 Wm ⁻¹ K ⁻¹
Heat capacity of gas mixture, $C_{p,f,cat}$	30 Jm of ¹ K ⁻¹
Heat transfer coefficient (bed to internal	900Wm ² K ⁻¹
tube wall), <i>h_{wint}</i>	
Thermal conductivity of wall material	50Wm ⁻¹ K ⁻¹
(steel), xwall	
External heat transfer coefficient, $h_{W,ex}$	1600Wm ⁻¹ K ⁻¹
Therm al transmittance, U _{wa} y	1380 Wm ⁻¹ K ⁻¹
Bulk density of bed, pð	790kgm ⁻³

PCM Physical Properties

Table 3: PCM and temperature dependent properties

Parameter	Value	Units
PCM	Sn	-
Melting temperature	505	K
Latent enthalpy of fusion	60500	J/kg
Density of solid	7280	kg/m ³
Density of liquid	6940	kg/m ³
Heat capacity of solid	231	J/(kgK)
Heat capacity of liquid	244	J/(kgK)
Therm al conductivity of solid	73	W/(m.K)
Therm al conductivity of liquid	33.5	W/(m.K)
Differential m elting range, ∆T	2.0	К