In situ transesterification of microalgae

S Velasquez-Orta, J Lee, A Harvey
PIN Meeting
21/05/2013

FAME production using in situ transesterification

Conventional transesterification

Biomass Oil extraction solvent catalyst Transesterification Purification **Biodiesel**

In situ transesterification

Objectives

- Evaluate the relative moisture that can be used during in situ transesterification of *Nannochloropsis o.* and *Chlorella v.*
- Analyse the cell structure before and after transesterification
- Obtain the maximum FAME production from algae strains

Methods

In situ transesterification methodology

Peter Batty, 2012

Results: effect of moisture content

- ✓ Highest recoveries were obtained when using sulphuric acid as catalyst.
- ✓ Recoveries were different for Nannochloropsis vs sulphuric acid

Newcastle University

Results: change in microalgae diameter

Highest yield of FAME obtained

✓ FAME yield values obtained were 92±2% when using Chlorella sp. and 73±5% when using Nannochloropsis oculata.

Thank you!

http://www.sciencedirect.com/science/article/pii/S136 9703X13000983

Acknowledgements:
Miss Elinor Shilling, Dr Thea Coward