

Micro-structured membrane reactors for WGS reaction

A. Helmi, F. Gallucci, M. Van Sint Annaland

PIN21 23rd May 2013 Newcastle University

This project is supported by the European Community's Seventh Framework Programme Grant Agreement N^o NMP3-LA-2011-262840 (DEMCAMER).

The present document reflects only the author's views and the Union is not liable for any use that may be made of the information contained therein".

Technische Universiteit **Eindhoven** University of Technology

JIP PRUM

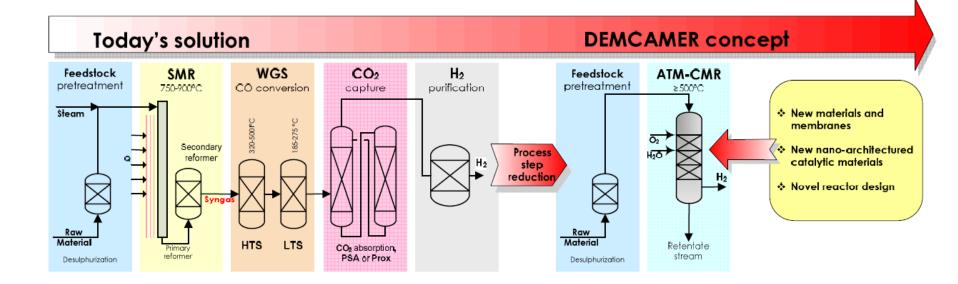
1 3 3 4 B.

Where innovation starts

Outline

- **DEMCAMER**
- Objectives
- Strategy
- Result and discussion
- Lab-scale reactors

We all have a date with the planet



Faculty of Chemical engineering and Chemistry / Chemical Process Intensification (SPI)

17-6-2013 PAGE 1

DEMCAMER

<u>DESIGN AND MANUFACTURING OF CATALYTIC MEMBRANE REACTORS BY</u> DEVELOPING NEW NANO-ARCHITECTURED CATALYTIC AND SELECTIVE MEMBRANE MATERIALS

Faculty of Chemical engineering and Chemistry / Chemical Process Intensification (SPI)



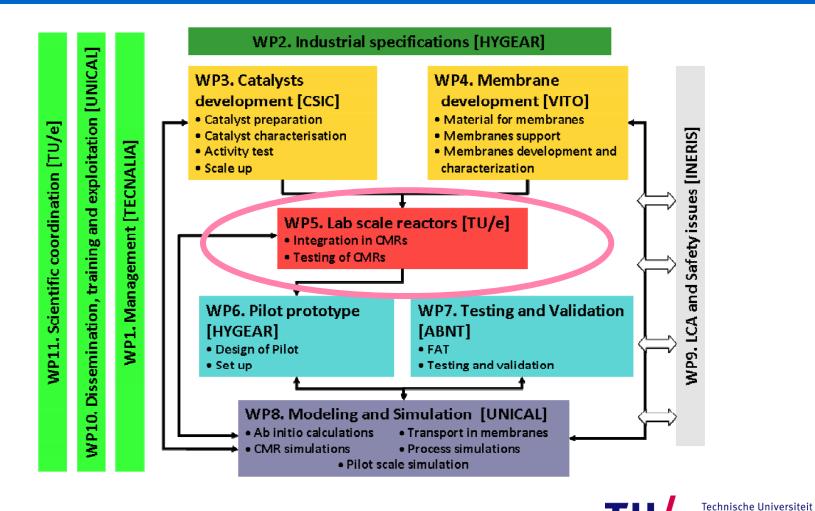
Technische Universiteit

University of Technology

Eindhoven

Selected chemical processes

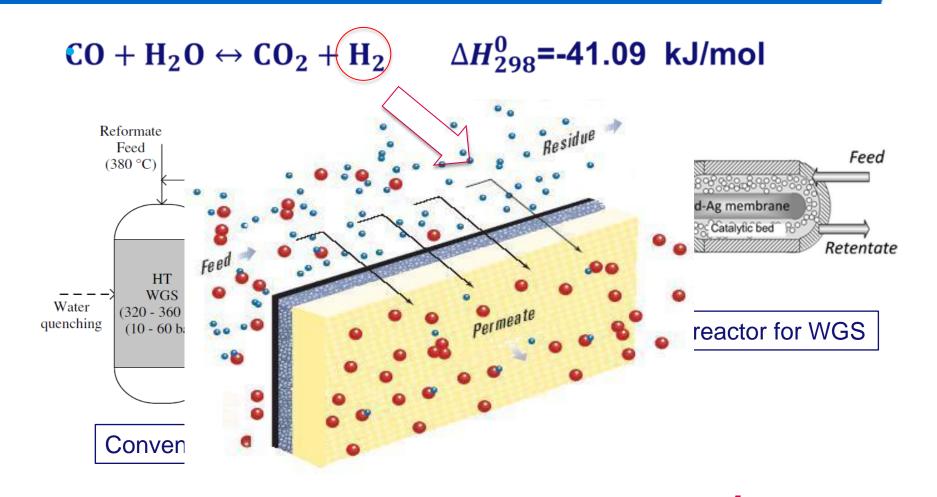
Faculty of Chemical engineering and Chemistry / Chemical Process Intensification (SPI)


17-6-2013 PAGE 3

Composition consortium

17-6-2013 PAGE 4

Work packages

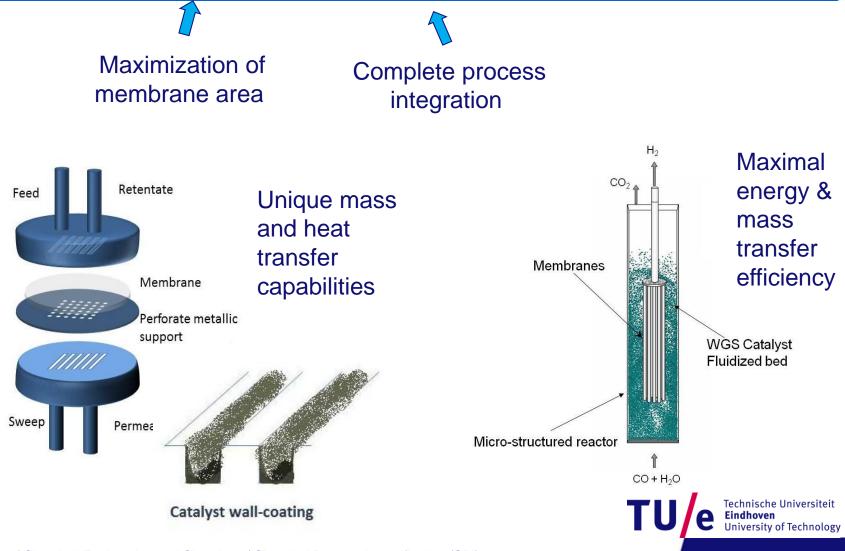


17-6-2013 PAGE 5

University of Technology

Eindhoven

Water Gas Shift (WGS) reaction


17-6-2013 PAGE 6

Technische Universiteit **Eindhoven**

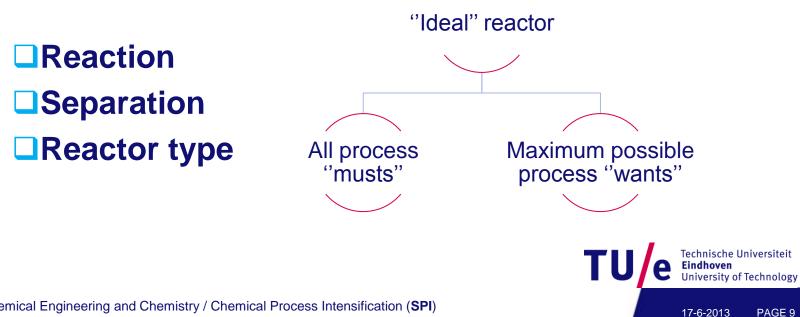
University of Technology

TU

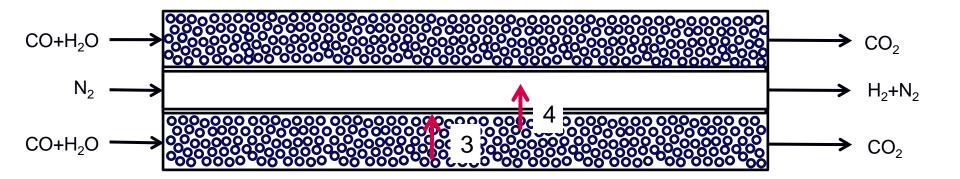
Micro-structured membrane reactors

Faculty of Chemical Engineering and Chemistry / Chemical Process Intensification (SPI)

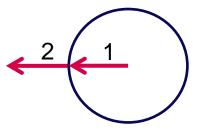
17-6-2013 PAGE 7



- To evaluate different catalyst-membrane integration ways in order to optimize some reactor configurations (fluidized bed and packed bed micro-reactors)
- Test and validate the best designs based on the study of different concepts of membrane reactors at lab scale



Strategy


- How do we arrive at the ideal multiphase reactor configuration meeting most closely with the process requirements?
- The problem is divided into three levels to be analyzed

Mass transfer phenomena inside a PBMR

- 1) Internal mass transfer resistance
- 2) External mass transfer resistance
- 3) Resistance from bed to wall
- 4) Resistance through the membrane
- 5) Catalyst activity

Packed Bed Membrane reactor

1D pseudo-homogeneous

Continuity equation

$$\frac{\partial}{\partial t}(\varepsilon \rho_g) + \frac{\partial}{\partial z}(\varepsilon \rho_g u) = 0$$

Total momentum balance

$$\beta = 150 \frac{(1-\varepsilon)^2}{\varepsilon^3} \frac{\mu_g}{\rho_g d_\rho^2} + 1.75 \frac{(1-\varepsilon)}{\varepsilon^3} \frac{\varepsilon u}{d\rho}$$

$$\frac{\partial}{\partial t}(\varepsilon\rho_{g}u) + \frac{\partial}{\partial z}(\varepsilon\rho_{g}u^{2}) = -\varepsilon\frac{\partial p}{\partial z} - \beta \rho_{g}u - \frac{\partial}{\partial z}(\varepsilon\tau_{g}) + \varepsilon\rho_{g}g$$

Friction coefficient **TU**/e ^{Technische Universiteit}
University of Technology

Faculty of Chemical Engineering and Chemistry / Chemical Process Intensification (SPI)

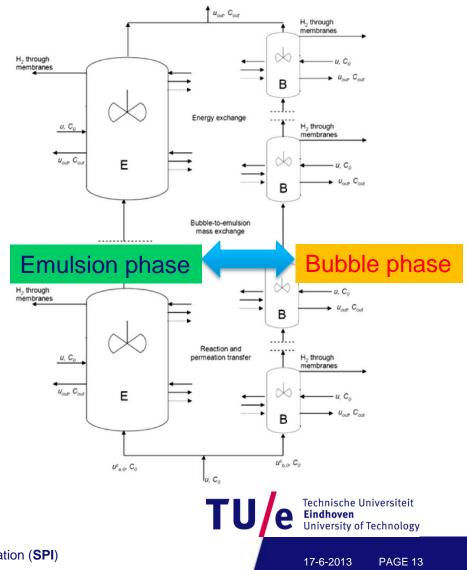
Packed Bed Membrane reactor

Component mass balance

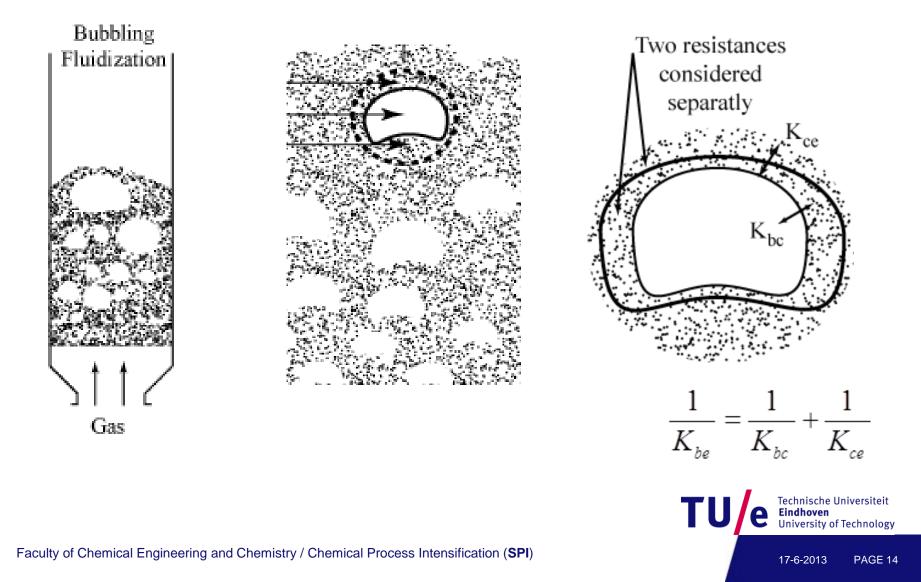
Trans membrane flux term depends on the membrane used

$$\frac{\partial}{\partial t}(\varepsilon\rho_g\omega_i) = -\frac{\partial}{\partial z}(\varepsilon\rho_g u\omega_i) + \frac{\partial}{\partial z}\left(\rho_g D_{ax,i}\frac{\partial\omega_i}{\partial z}\right) + S_{r,i} - J_i$$

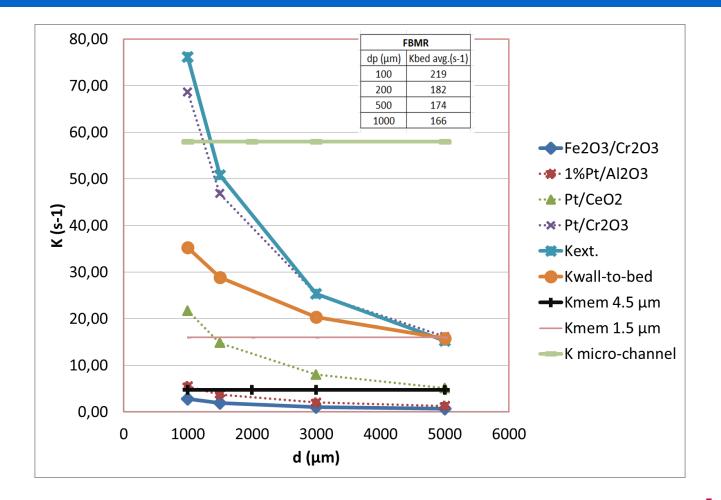
$$S_{r,i} = (1-\varepsilon)\rho_g M_i \sum_{j=1}^{nr} \gamma_{ij} r_j$$


e.g. Richardson equation for permeation through thick Pd-based membranes

$$J_{H2} = \frac{Pe^{0} \exp\left(\frac{Ea}{RT}\right) \left(\sqrt{P_{H_{2},upstream}} - \sqrt{P_{H_{2},downstream}}\right)}{\delta_{m}}$$


Faculty of Chemical Engineering and Chemistry / Chemical Process Intensification (SPI)

Fluidized bed Membrane reactor


- A typical two-phase model for a membrane assisted fluidized bed reactor can be used for simulation
- Membranes are immersed in the reactor
- Reactor consists of two phase. The bubble and the emulsion phase

Mass transfer phenomena inside a FBMR

General maps

Faculty of Chemical Engineering and Chemistry / Chemical Process Intensification (SPI)

17-6-2013 PAGE 15

Technische Universiteit

University of Technology

Eindhoven

TU

DEMCAMER target for membrane

Membrane code	Selective layer material / thickness	Black resin in the interphase	Temperature (ºC)	Permeance H ₂ [10 ⁻⁸ (mol/m2 s Pa)]*	H ₂ /N ₂ ideal selectivity
DEMCAMER/R EFORCELL	<i>Pd alloy /</i> <3 µm	N/A	400	260	10.000
Proiects target P19	Pd PVD / not measured	Yes	300	85	26.100
P20	Pd PVD / 4.0-4.2 µm	No	400	175	3.288
P44	Pd-Ag PVD / not measured	Yes	300	162	8.972
P47	Pd-Ag PVD / not measured	Yes	300	71	8.662
AIST (Pacheco et al. 2006)	μm	N/A	300	170	1.000
AIST (Pacheco et al. 2008)	Pd pore filling / 5 µm	N/A	425	210	300
CSM (Hatlevik et al. 2010)	Pd-Au ELP / 2.3 µm	N/A	400	710	82.000
DICP (Goldbach and Xu 2011)	Pd-Au ELP / 2-3 µm	N/A	500	620	1.400
SINTEF (Peters et al. 2011a)**	Pd-Ag PVD / 2.8 µm	N/A	400	1.500	2.900
WPI (Ma 2009)	Pd ELP / 7 µm	N/A	450	96	4.500
REB (2003)	Pd-Ag / (4-5 µm)	N/A	400	8,12	-

Gallucci, F., Fernandez, E., Corengia, P., van Sint Annaland, M, Chemical Engineering Science 92, (2013) 40-66.

Faculty of Chemical Engineering and Chemistry / Chemical Process Intensification (SPI)

DEMCAMER target for catalyst

Catalyst type	BET area (m2/g)	Rate at 450 °C (mmol/g cat. s)	Ea (KJ/mol)
DEMCAMER catalyst	75.2	1.864	52±1
Pt/Cr2O3	22	0.174	41 ±2
Pt/Cr2O3-Fe3O4	63	0.149	50±3
Pt/U3O8	2.3	0.142	59±3
Pt/CeO2-ZrO2	67	0.079	28±1
Pt/CeO2	122	0.055	52±1
Pt/MgO	77	0.034	41 ±1
Pt/V2O5	6	0.032	52 ±3
Pt/Fe3O4	29	0.022	55±3
Pt/MoO3	1.6	0.02	49 ±3
Pt/Al2O3	272	0.014	47±1

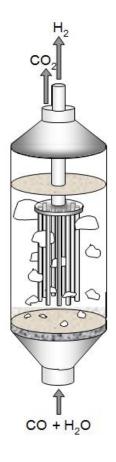
Ratnasamy C., Wagner J. P., Catalysis reviews: Science and Engineering, 51:3, 325-440

Faculty of Chemical Engineering and Chemistry / Chemical Process Intensification (SPI)

According to general maps:

✓ At the presence of enough active catalyst and highly permeable membrane, extent of wall-tobed mass transfer is the limiting phenomenon

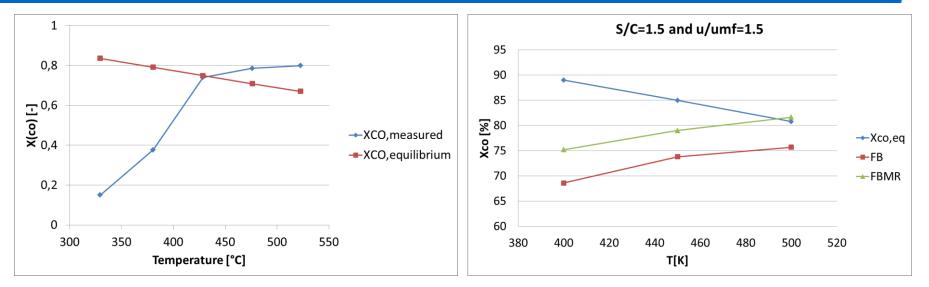
 With the micro-structured membrane reactor large reduction in bed-to-membrane mass transfer limitations can be achieved

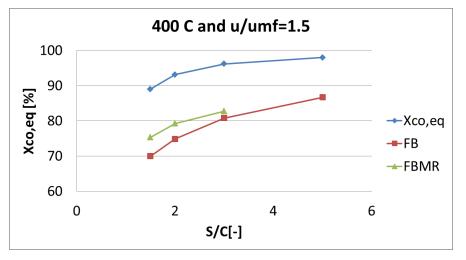


Lab scale membrane reactors

- Testing & Validation of Membrane Reactors at Labscale:
- **1.** Packed bed membrane reactor (PBMR)
- 2. Fluidized bed membrane reactor (FBMR)
- **3.** Micro-channel membrane reactor

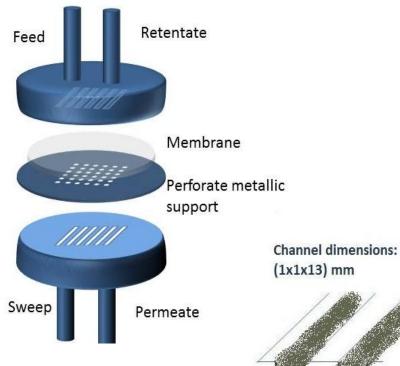
FBMR

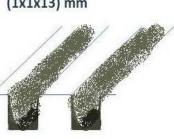



Two options will be compared:

- 1) Small flat channels where the walls are the (flat) membranes confining a fluidized suspension
- 2) Small membrane tubes positioned closely together submerged into a fluidized bed

Results for FBMR



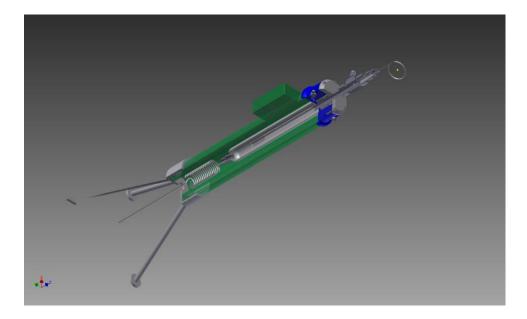

- Pd-based membranes can markedly enhance the fluidized bed reactor performance
- CO conversions higher than equilibrium value can be reached at high temperatures

Ue Technische Universiteit Eindhoven University of Technology

17-6-2013 PAGE 21

Micro-channel membrane reactor

Catalyst wall-coating

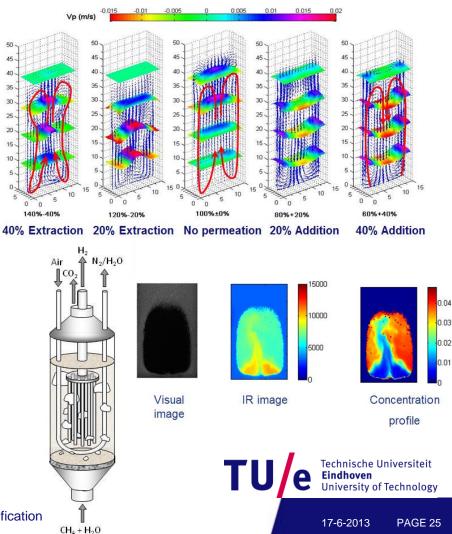


17-6-2013 PAGE 22

PBMR (backup solution)

- 1 membrane tube inside the bed
- Highly active Pt based catalyst and highly permeable Pd based membrane

Summary & future work


- ✓ At the presence of enough active catalyst and highly permeable membrane, extent of wall-to-bed mass transfer is the limiting phenomenon
- With the micro-structured membrane reactor large reduction in bed-to-membrane mass transfer limitations can be achieved
- Membrane reactor concepts have been already developed for model validation and study the performance of the reactor concepts at lab scale

Ongoing projects on Micro FBMR

 Effect of gas permeation on hydrodynamics and heat & mass transfer (Tan, L.)

• Design of Micro FBMR for H2 production (Dang T.Y.N.)

Solids circulation pattern

Faculty of Chemical Engineering and Chemistry / Chemical Process Intensification

Thank you for your attention

This project is supported by the European Community's Seventh Framework Programme Grant Agreement N° NMP3-LA-2011-262840 (DEMCAMER)

Faculty of Chemical Engineering and Chemistry / Chemical Process Intensification (SPI)