

An Overview of Research into Mesoscale Oscillatory Baffled Reactors at Newcastle

Adam Harvey Professor of Process Intensification Process Intensification Group (PIG) Chemical Engineering & Advanced Materials (CEAM) Newcastle University

PIN20 Newcastle University 23rd May 2013

Process Intensification Group: Current Research

	Application Areas	Technologies
1	High throughput screening	OBR (oscillatory baffled reactor)
2	Heterogeneous Catalysis i.Catalytic cracking for biofuels ii.Solid catalysts for biodiesel	ii. OBR
3	Crystallization	SDR, OBR
4	Biofuels & biorefining	OBR, Reactive Extraction
5	Polymerisation	SDR (spinning disc reactor)
6	Thermal management	Heat Pipes, Heat pumps, Organic Rankine Cycles
7	Bioprocessing	SDR RPB
8	CO2 Sequestration	RPB (Rotating Packed Bed)

PIG: 26 Members, including 4 academic staff and 17 PhD Students

What is Process Intensification? Before...

P. I. G.

· MORE AGILE

Smaller Leaner More efficient Reduced Emissions

The Oscillatory Baffled Reactor (OBR)

Products out

Achieves plug flow by tanks in series rather than turbulence

Niche: long processes in continuous mode

Mesoscale OBRs

(a) Integral baffles

(b) Helical baffles

(c) Central / axial circular baffles

Diameter (D): 5mm

Spacing (I)=1.5 x D

Open area (S): 25-40%

NB: "Conventional" scale typically 24mm, 48mm + upwards

Meso OBRs: Features

- Low flow rate (few mL/h): residence times of the order of hours in reactor a few metres in length (~ few 10s cm² footprint)
- Uniform suspension of solids
- Plug flow
- Uniform shear
- Controllable mixing of L-L systems

Cf. other screening platforms

Residence time distribution: Experimental Set-up

Net flow (water):0.3ml/min-8ml/min

Amplitude (centre-topeak):0-4mm

Frequency: 0.5-10Hz

Tracer: KCI

Meso OBR: Platform

JacketedUpward gradient

Parameters used

Dimensionless groups:

- Net flow Reynolds number:
- Oscillatory Reynolds number:
- Strouhal number:
- Velocity ratio:

 $Re_{n}=u^{*}D^{*}\rho/\mu$ $Re_{o}=(2\pi x_{o}f)\rho D/\mu$ $St=D/(4\pi x_{o})$ $\psi=Re_{o}/Re_{n}$

Residence time distribution (RTD) analysis:

- Θ=t/τ, τ: mean residence time
- E(Θ)= TE(t), with
 σ(Θ)²=σ(t)^{2/}T²

$$E(t) = \frac{C_i}{\sum_i C_i \Delta t_i}$$
$$\sigma(t)^2 = \sum_i (t_i - \tau)^2 E(t) \Delta t_i$$

$$E(\theta) = \tau E(t) = \frac{N(N\theta)^{N-1}}{(N-1)!} e^{-N\theta}$$

 $\lambda T = 1$

Tanks-in-series model :

Effect of oscillation conditions and net flows

MesoOBR Application 1: Imine synthesis

- Reaction can be followed by IR in situ
 - Entirely liquid phase

Commercial importance:

- certain biological processes
- polymeric substance synthesis
 - combinatorial chemistry

Multi steady-state & dynamic screening: Liquid phase reaction (an imine synthesis, online FTIR)

Newcastle

Multi steady-state & dynamic screening: Liquid phase reaction (an imine synthesis, online FTIR)

Newcastle

MesoOBRs: "Dynamic Screening" Validation

Method	Regression (R ²)	Rate Constant (s ⁻¹)
Beaker Batch	0.96	0.20 ±0.020
Meso Batch	0.97	0.20 ±0.006
Flow (steady state)	0.95	0.22±0.006
Flow (dynamic)	0.97	0.20±0.006

MesoOBRs: Multivariate Screening, or "Dynamic Design of Experiments"

Benzaldehyde reduction profile for different ratio and screening method

Newcastle University

2-phase liquid-liquid system Case study: Biodiesel production

- Methanol + Rapeseed oil
- KOH catalyst: 1%wt (oil mass)
- ✤Temperature: ~60°C

<u> Aim:</u>

To perform continuous screening of twophase liquid systems

Biodiesel production

Effects of Residence Time, Catalyst Type and Concentration on Biodiesel Conversion

Effects of residence time on FAME (biodiesel) content at different catalysts concentrations for RSO transesterification at 6:1 methanol/RSO molar ratio, $Re_o = 160$, $T = 60^{\circ}C$.

Effects of Reaction Time on the FAME Content (Numerical Model)

Vewcastle Jniversity

Reaction time vs. FAME content as function of catalyst (KOH) concentration [6:1 methanol/RSO molar ratio, 60°C and 1% (w/w) water] Saponification kinetics determined in-house.

MesoOBRs: Biodiesel (Homogeneous Catalyst)

Main finding

Reaction times of only 2 minutes required

1-2h in industry→a 30- to 60-fold reactor size reduction

[a significant intensification]

Multisteady state screening: Liquid-liquid-solid system

Hexanoic acid esterification with methanol (Amberlyst 25 catalyst)

Continuous esterification of hexanoic acid with methanol in mesoscale oscillatory baffled reactor, using Amberlyst 70 catalyst at operating conditions of 60°C, 10mins residence time (τ), catalyst packing of 0.45g loading per millilitre of reactor volume, oscillatory conditions of 4.5Hz and 8mm (Re_o = 2400), and reactants molar ratios ramped from 1:1 to 30:1 methanol to acid molar ratios

Dynamic multidimensional screening: Liquid-liquid-solid system

Hexanoic acid esterification with methanol (Amberlyst 25 catalyst)

Scale-up: helically baffled mesoreactors

<u>D= 5mm ---> D= 10mm ---->D=25mm</u>

Maintain:

- 1. Open area % (S)
- 2. Spacing/diameter (l/D)
- 3. Oscillation conditions (Re_o, St)

Plug flow behaviour: helical baffles

D=10mm, St=0.1

Results: Scale-up (1)

$Re_{n1} = 4.3 (D1=5mm)$ $Re_{n2} = 10 (D2=10mm)$

MesoOBR: Crystallization New Crystal Form of L-glutamic Acid

- **Newcastle** University
- All appear to be approximately the same size Mean size = 17.5 μ m; S.D. = 2.10 μ m

SPC: Smooth Periodic Constrictions

Stirred Tank Reactor Observations

Compact Mesoreactor Module

- All stainless steel construction
 Ports on each channel
- 3. 1h residence time per 20 cm² footprint
 - 4. Construction underway
- 5. Temperature control c.f plate and frame heat exchangers

Conclusions: meso OBRs

- 1. Broad "operating window" for plug flow
- 2. Successfully demonstrated continuous multisteady state and dynamic screening for:
 - 1. Single phase
 - 2. Two phase (L-L)
 - 3. Three phase (L-L-S)
- 3. Helical baffled mesoreactors:
 - 1. Scaleability by maintaining Re_o , St and $Re_{n2}/Re_{n1} \sim D_2/D_1$
 - 2. Enormous "operating window" for plug flow
- 4. Biodiesel intensification proven
- 5. New form of crystal discovered

Acknowledgments

EPSRC

- The Newcastle PIG, particularly:
- 1. Anh Phan
- 2. Fatimah Mohd Rasdi
- 3. Valentine Eze
- 4. Richard Abernethy

All the projects below Imine synthesis (screening) Biodiesel reaction Crystallization

Thank you for listening

P.I.: Reading Material

Kamelia Boodhoo and Adam Harvey

Process Intensification For Green Chemistry

