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Introduction: Fluidized bed membrane reactor (FBMR) 
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Limitations: 

 Low permeation rate of H2 via Pd-membranes 

 Mass transfer from bubble-to-emulsion phase 

   Micro-structured membrane-assisted fluidised bed reactor 
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Patil et al., 2005 



Micro-fluidized bed membrane reactors 

• Length scale between 

membrane walls? 

• Influence of gas permeation on 

the hydrodynamics? 

• Influence of gas permeation on 

the gas back-mixing 

characteristics? 
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Hydrodynamics: Solid velocity using Particle Image 

Velocimetry (PIV) 

17/06/2013 

PIV setup with visual 

high speed camera 

(2016x2016px@1600Hz) 
Double frame with 

small time delay 

(Δt = 500µs) 

Discrete solid 

displacement 

Solid flow field 

/ Chemical Engineering and Chemistry Department 



Hydrodynamics: Digital Image Analysis (DIA) 

17/06/2013 / Chemical Engineering and Chemistry Department 

Buijtenen et al., 2010 

ε,3D obtained from DPM simulation 

VIS image Ɛ 2D Ɛ 3D Bubble detection Equi. Bubble diameter 



Coupled PIV/DIA 
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Solid flow field from PIV 

(non-invasively): 

Apparent solid flow!! 

Solid holdup from DIA 

(non-invasively) 
Corrected solid  flow field: 

Solid flux (non-invasively) 
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Results: Solid circulation pattern (bubbling regime)  
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40% Extraction 40% Addition Reference 



/ Chemical Engineering and Chemistry Department 17/06/2013 

40% Extraction 

Ug,out = 0.75m/s 

20% Extraction 40% Addition 20% Addition Reference 

Solid flux: 

Results: Solid circulation pattern (bubbling regime)  

Dang et al., 2013 submitted to Chem.Eng.J. 
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Ug,out = 0.75m/s 

Solid holdup 

Results: Solid/bubble size distribution with influence of gas permeation 

40% Extraction 20% Extraction 40% Addition 20% Addition Reference 
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Bubble size distribution 

Digital Image Analysis(PIV/DIA) 

Dang et al., 2013 submitted to Chem.Eng.J. 
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Results: Solid circulation pattern (turbulent regime) 

Uginlet = 2 m/s 

40% Extraction 20% Extraction 40% Addition 20% Addition Reference 

ρp = 2500 kg/m3 

 dp = 400 ÷ 600 µm 

Dang et al., 2013 submitted to Chem.Eng.J. 
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Results: Influence of reactor sizes 

Smaller reactor sizes avoid the densified zones and gas by-passing 

Dang et al., 2013 submitted to Chem.Eng.J. 
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Results: densified zone creation for gas extraction 

Extent of densified zone 
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 Smaller reactor  less densified zone  improve solid mixing 

 Turbulent fluidization is more preferred than bubbling fluidization 

 Relatively large particle size  better hydrodynamics 

 

α : correction factor 

ε: solid holdup in fixed beds 



Result: Gas back-mixing characteristics 
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Gas back-mixing 
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dp = 400 ÷ 600 µm, ρp = 2500 kg/m3 

Hbed
 = 40 mm, Hmemb = 40 mm 

Ug, outlet = 0.75 m/s 

 

Below the injection point  tracer gas detected  finite gas back-mixing 

 



Gas back-mixing characteristics 
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40% Extraction 40% Addition Reference 

Gas back-mixing 

dp = 400 ÷ 600 µm, ρp = 2500 kg/m3 

Hbed
 = 40 mm, Hmemb = 40 mm 

Ug, outlet = 0.75 m/s 

 

Dang et al., 2013 submitted to Catalysis Today 



Gas back-mixing characteristics 
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Influence of membrane areas Influence of total bed mass 

 Increase bed mass  increase gas back-mixing 

 Membrane areas  vary the local gas back-mixing profiles 

Dang et al., 2013 submitted to Catalysis Today 



Gas back-mixing 
Axial dispersion model 
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2D-steady state axial back-mixing model  

0
,

,

2

2

, 









z

CU

z

C
D

zg

zg

ga


Z = 0, C = CF 

Z = - ∞, C = 0 

Boundary conditions: 


















F

zz

zg

i

ga

C

C

U

zZ
D

ii

i

ln

11 ,

,


Solution of eqn.(1) 

(1) 

z = 0, C=CF 

z = -∞, C=0 



/ Chemical Engineering and Chemistry Department 17/06/2013 

Gas back-mixing coefficients 
 

 Gas addition  increase gas back-mixing rate 

 Gas extraction  Increase bed-to-membrane resistance  decrease back-mixing rate 

dp = 400 ÷ 600 µm, ρp = 2500 kg/m3 

Hbed
 = 40 mm, Hmemb = 40 mm 

Ug, outlet = 0.75 m/s 

 

Dang et al., 2013 submitted to Catalysis Today 



Conclusions & outlook 
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Hydrodynamics: 

 Gas extraction creases densified zones with low solid mixing and gas by-passing in the center 

 Gas addition inverses solid circulation pattern with gas by -passing near the  membrane walls 

 Very careful to integrate membranes inside the fluidized beds 

 Increase membrane areas/fluidization gas velocity  avoids densified zones & solid inversion 

 Micro-fluidized bed membrane reactors  enhance reactor performance 

Gas back-mixing 

 Gas addition increases overall gas back-mixing rate 

 Gas extraction increases mass resistance  decreases  gas back-mixing rate 

Outlook 

 Study hydrodynamics and mass transfer operated under reactive conditions 
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Thank you for your attention! 
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