Micro-fluidized bed membrane reactors: Experimental investigation into hydrodynamics and gas back-mixing

N. Dang, F. Gallucci and M. van Sint Annaland

Chemical Process Intensification Eindhoven University of Technology, The Netherlands PIN 21st , Newcastle, May 23rd, 2013

Multiphase Reactors Group

Department of Chemical Engineering & Chemistry Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Introduction

Membrane fluidized beds for pure hydrogen production

versity of Technology

Introduction: Fluidized bed membrane reactor (FBMR)

Limitations:

- > Low permeation rate of H_2 via Pd-membranes
- Mass transfer from bubble-to-emulsion phase

Micro-structured membrane-assisted fluidised bed reactor

Maximization of membrane area Complete process integration Optimal energy & mass transfer efficiency

Fluidized bed

membrane

reactor

Patil et al., 2005

Pd-membrane

assembly

Micro-fluidized bed membrane reactors

- Length scale between membrane walls?
- Influence of gas permeation on the hydrodynamics?
- Influence of gas permeation on the gas back-mixing characteristics?

Hydrodynamics: Solid velocity using Particle Image Velocimetry (PIV)

PIV setup with visual high speed camera (2016x2016px@1600Hz)

Double frame with small time delay $(\Delta t = 500 \mu s)$

Hydrodynamics: Digital Image Analysis (DIA)

Coupled PIV/DIA

Results: Solid circulation pattern (bubbling regime)

40% Addition

Results: Solid circulation pattern (bubbling regime)

Solid flux:

Ug,out = 0.75m/s

Dang et al., 2013 submitted to Chem.Eng.J.

Technische Universiteit **Eindhoven** University of Technology

Results: Solid/bubble size distribution with influence of gas permeation

Digital Image Analysis(PIV/DIA)

 $U_{g,out} = 0.75 m/s$

Technische Universiteit

University of Technology

Eindhoven

Bubble size distribution

/ Chemical Engineering and Chemistry Department Dang et al., 2013 submitted to Chem.Eng.J.

Results: Solid circulation pattern (turbulent regime)

 $\begin{array}{l} \rho_{p} = 2500 \ \text{kg/m}^{3} \\ \textbf{d}_{p} = 400 \div 600 \ \mu\text{m} \end{array}$

Dang et al., 2013 submitted to Chem.Eng.J.

Technische Universiteit **Eindhoven** University of Technology

Results: Influence of reactor sizes

Smaller reactor sizes avoid the densified zones and gas by-passing

Dang et al., 2013 submitted to Chem.Eng.J.

Results: densified zone creation for gas extraction

Extent of densified zone

Densified zone defined as:

- Smaller reactor \rightarrow less densified zone \rightarrow improve solid mixing
- Turbulent fluidization is more preferred than bubbling fluidization
- Relatively large particle size → better hydrodynamics

Result: Gas back-mixing characteristics

Front side

Back side

Gas back-mixing

Below the injection point \rightarrow tracer gas detected \rightarrow finite gas back-mixing

 $\begin{array}{l} d_{p} = 400 \div 600 \ \mu m, \ \rho_{p} = 2500 \ kg/m^{3} \\ H_{bed}^{} = 40 \ mm, \ H_{memb} = 40 \ mm \\ U_{g, \ outlet} = 0.75 \ m/s \end{array}$

Gas back-mixing characteristics

Gas back-mixing characteristics

Influence of membrane areas

Influence of total bed mass

Technische Universiteit

University of Technology

- Increase bed mass → increase gas back-mixing
- Membrane areas → vary the local gas back-mixing profiles

Dang et al., 2013 submitted to Catalysis Today

Gas back-mixing Axial dispersion model

2D-steady state axial back-mixing model

Gas back-mixing coefficients

- Gas addition → increase gas back-mixing rate
- Gas extraction → Increase bed-to-membrane resistance → decrease back-mixing rate

Dang et al., 2013 submitted to Catalysis Today

Technische Universiteit

University of Technology

Conclusions & outlook

Hydrodynamics:

- Gas extraction creases <u>densified zones</u> with low solid mixing and <u>gas by-passing</u> in the center
- Gas addition *inverses solid circulation pattern* with gas by -passing near the membrane walls
- → Very careful to integrate membranes inside the fluidized beds
- Increase membrane areas/fluidization gas velocity → avoids densified zones & solid inversion
- Micro-fluidized bed membrane reactors → enhance reactor performance

Gas back-mixing

- Gas addition <u>increases</u> overall gas back-mixing rate
- Gas extraction <u>increases mass resistance</u> → <u>decreases</u> gas back-mixing rate

Outlook

Study hydrodynamics and mass transfer operated under reactive conditions

Acknowledgements

Sponsor

VIDI 10244

Multiphase Reactors

Chemical Engineering & Chemistry

Thank you for your attention!

