PROCESS INTENSIFICATION: Water Electrolysis in a Centrifugal Acceleration Field

L Lao, C Ramshaw and H Yeung
30th June 2009
Outlines

- Introduction
- Rig design
- Experimental results
- Discussions & conclusions
Introduction: Background

- Green energy tends to fluctuate. However, consumers need a stable power supply;
- One solution to this problem is to store pressurised hydrogen from an electrolytic cell then recover power via a fuel cell;
- The efficiency of the conversion needs to be improved
Introduction: Background

Bubble blocking around electrodes in 1-g field and Micro-g field (Matsushima et al 2003)
Elevated acceleration fields increase the buoyancy force \((\Delta \rho \cdot g)\) for gas-liquid systems;

This raises bubble terminal velocities, interfacial shear stress and flooding rates;

When applied to water electrolysis, high \(g\) eliminates inter-electrode gas bubbles even at high current densities;

Close electrode spacing and high-area electrodes may be exploited without incurring gas blinding problems;
Introduction: Objectives

• The present study was aimed at establishing the **feasibility and performance** of a rotary water electrolyser;

• Of the particular interest was the possibility of very thin cells and high area electrodes so as to give **high volumetric performance at high energy efficiency**;

• Ultimately a bipolar rotary cell stack is envisaged which will operate effectively with **intermittent power** sources.
• **General**
 - In order to provide a comparison with conventional technology, a static cell was operated under similar conditions to those used for the rotary cell.

• **Variables covered**
 - Current density: 0-20 kA/m²;
 - Rotation acceleration: 1-65 g;
 - Electrolyte concentration: 10%-40% w/w KOH/water;
 - Temperature: Ambient - 80°C;
 - Sundry electrode structures based on nickel and stainless steel
Rig Design: static rig (Cell)

Ni Mesh: Actual area/project area = 2.2; thickness = 0.5 mm
DC transmission: an unsuccessful case

- The envisaged cell stack (D~0.5 m) requires ~2000 Amps.
- Conventional slip rings are bulky and generate significant frictional and resistive losses.
- A low-melting alloy (Cerebend) bath at first performed well but quickly developed a mousse-like consistency.

Molten Metal Baths using Cerebend:
Bi- 50%,
Pb-26.7%
Sn-13.3%
Cd-10%
in w/w.
Rig Design: Rotary rig

- Driving Motor
- Electrolyser Cell
- Telemetry Pickup
- Electrolyte Pump
- Data Logger
- Current Supply

PIN, 30th June 09, Newcastle
Rig Design: Schematic of the Cell

- Shaft (Left)
- Shaft (Right)
- Gaskets
- Membrane
- Anode (Nickel Mesh)
- Cathode (Nickel Mesh)
- Electrolyte Sucker tube
- Electrolyte Feeder tube
- Current Feeder (In)
- Current Feeder (Out)
- Metering Wire
Rig Design: Electrode and diaphragm
Static rig results: Effect of inter-electrode space

Extra space for gas removal reduces cell voltage
Electrode: 1 layer Ni mesh; 30% KOH, 80 C.

Time trace of cell voltage in 1-g rig: Current density 10kA/m²

More difficult gas removal gives higher cell voltage level and more violent voltage fluctuations

PIN, 30th June 09, Newcastle
Static rig results: Electrode material

Potential v.s. Current Density for Different Materials, 30% KOH w/w, 75°C, 1mm Spacer in each side of the diaphragm

1 Layer of Ni Mesh, Inc
1 Layer of Ni Mesh, Dec
1 Layer Cat. Ni, Inc
1 Layer Cat. Ni, Dec
SS plate, Inc
SS plate, Dec

Increase of actual area of electrodes helped to reduce the cell voltage, catalyst coating has little effect
Static rig results: Electrode structure

Extra mesh layers reduces cell voltage especially at high current density

Potential v.s. Current Density, Nickel Mesh, 30% KOH w/w, 75°C
1mm spacer in each side of the diaphragm

1 Layer of Ni Mesh, Inc
1 Layer of Ni Mesh, Dec
2 Layers, Inc
2 Layers, Dec
3 Layers, Inc
3 Layers, Dec
Static rig results: Alkaline concentration

Potential v.s. Current Density, 3 Layers of Nickel Mesh, 75C, Diaph Spaced

Optimum electrolyte concentration is around 30%
Summary

• As expected easier gas removal reduces cell voltage;
• Extra nickel electrode area tends to reduce cell voltage;
• Optimum electrolyte concentration is around 30%
Rotary rig results: Stainless steel foam

30% w/w KOH, 70°C, 0.5 mm spacer each side of diaphragm;
Electrode: 2 layers of stainless steel foam

Higee benefit achieved up to ~10 g

PIN, 30th June 09, Newcastle
Rotary rig results:
Multi-layer nickel mesh

Commercial pressurised electrolyser @ 4000 A/m² e.g. H₂ IGen 300/1/25

Electrode: 3 layers of Ni mesh

Higee benefit achieved up to ~10 g
Rotary rig results: Electrolyte concentration and temperature

Ambient temperature $T_{\text{bulk}}=81\,\text{C}$

Optimum electrolyte concentration was around 30%

PIN, 30th June 09, Newcastle
Rotary rig results: Electrolyte temperature

Current Density 13.5 kA/m\(^2\), 30% w/w KOH, 1 mm Spacer each side of diaphragm, 3 layers of Ni Mesh;

Cell Voltage, V

Ambient T

T=81 C

PIN, 30th June 09, Newcastle
Rotary rig results: Spacer geometry

Current Density 4.5 kA/m², 30% w/w KOH, Ambient T, with spacer each side of diaphragm, 3 layers of Ni Mesh

Cell Voltage, V

Rotation a/g

Spacer 1
Spacer 2
Spacer 3

PIN, 30th June 09, Newcastle
Multi-layer beneficial?
Nickel mesh-Yes; Stainless steel foam-No
Rotary rig results: Traces of cell voltage

CD=13.5 kA/m²

Current density=13.5 kA/m², KOH 30% w/w, 71°C, 0.5 mm spacer in each side of the diaphragm; 3 layers of Ni mesh

- **Acceleration=3.2 g**

Rotation acceleration=3.2 g, KOH 30% w/w, 71°C, 0.5 mm spacer in each side of the diaphragm; 3 layers of Ni mesh

Similarity exists between the trace with **high CD, High g** and the trace with **low CD, low g**

PIN, 30th June 09, Newcastle
Comparisons of Energy efficiency

<table>
<thead>
<tr>
<th></th>
<th>Energy Required System kWh/kg</th>
<th>HHV of Hydrogen (equivalent to 142 MJ/kg) kWh/kg</th>
<th>System Efficiency %</th>
<th>Production Pressure psig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stuart: IMET 1000</td>
<td>53.4</td>
<td>39</td>
<td>73</td>
<td>360</td>
</tr>
<tr>
<td>Teledyne: EC-750</td>
<td>62.3</td>
<td>39</td>
<td>63</td>
<td>60-115</td>
</tr>
<tr>
<td>Proton: HOGEN 380</td>
<td>70.1</td>
<td>39</td>
<td>56</td>
<td>200</td>
</tr>
<tr>
<td>Norsk Hydro: Atmospheric Type No.5040 (5150 Amp DC)</td>
<td>53.5</td>
<td>39</td>
<td>73</td>
<td>435 up to 10,000</td>
</tr>
<tr>
<td>Avalence: Hydrofiller 175</td>
<td>60.5</td>
<td>39</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>This study</td>
<td>53.2</td>
<td>39</td>
<td>73</td>
<td>14.7</td>
</tr>
</tbody>
</table>

- This study: pure nickel/stainless steel; atmospheric pressure
Conclusions

• The data telemetry system and current connector worked well;
• At normal cell operating conditions (30% KOH, ~75 C) most of the cell voltage benefits were achieved at low rotational speed (>10g);
• At 70 C Nickel mesh electrodes were more effective than stainless steel foam. Multiple layers also reduced cell voltage;
• The rotary cell voltage was about 0.25-0.5 V less than the equivalent static cell under similar operating conditions, depending on the current density;
• The cell voltages achieved without an effective electrode coating were comparable with the best industrial values using fully developed pressurised cells.
We wish to acknowledge the financial support of the EPSRC UK and the In-Kind Support of Johnson Matthey Ltd For this study