Cranfield UNIVERSITY

PROCESS INTENSIFICATION: Water Electrolysis in a Centrifugal Acceleration Field

L Lao, C Ramshaw and H Yeung 30th June 2009

Outlines

Process Systems Engineering

- Introduction
- Rig design
- Experimental results
- Discussions & conclusions

Introduction: Background

Process Systems Engineering

- Green energy tends to fluctuate. However consumers need a stable power supply;
- One solution to this problem is to store pressurised hydrogen from an electrolytic cell then recover power via a fuel cell;
- The efficiency of the conversion needs to be improved

Tidal

power

Wind turbine

PIN, 30th June 09, Newcastle

Introduction: Background

Cranfield

Process Systems Engineering

Bubble blocking Around electrodes in 1-g field and Micro-g field (Matsushima et al 2003)

PIN, 30th June 09, Newcastle

Introduction: Background

- Elevated acceleration fields increase the buoyancy force (Δρ*g) for gas-liquid systems;
- This raises bubble terminal velocities, interfacial shear stress and flooding rates;
- When applied to water electrolysis, high *g* eliminates inter-electrode gas bubbles even at high current densities;
- Close electrode spacing and high-area electrodes may be exploited without incurring gas blinding problems;

Introduction: Objectives

- The present study was aimed at establishing the feasibility and performance of a rotary water electrolyser;
- Of the particular interest was the possibility of very thin cells and high area electrodes so as to give high volumetric performance at high energy efficiency;
- Ultimately a bipolar rotary cell stack is envisaged which will operate effectively with **intermittent power** sources.

Introduction: Project Scope

Process Systems Engineering

General

• In order to provide a comparison with conventional technology, a static cell was operated under similar conditions to those used for the rotary cell.

• Variables covered

- Current density
- Rotation acceleration:
- Electrolyte concentration:

0-20 kA/m2; 1-65 g;

10%-40% w/w KOH/water;

• Temperature:

Ambient - 80 C;

 Sundry electrode structures based on nickel and stainless steel

Rig Design: static rig (Cell)

Process Systems Engineering

Ni Mesh: Actual area/project area = 2.2; thickness= 0.5 mm

PIN, 30th June 09, Newcastle

Cranfield UNIVERSITY

Process Sustems Engineering

DC transmission: an unsuccessful case

Molten Metal Baths using Cerebend: Bi- 50%, Pb-26.7% Sn-13.3% Cd-10% in w/w.

- The envisaged cell stack (D~0.5 m) requires ~2000 Amps.
- Conventional slip rings are bulky and generate significant frictional and resistive losses.
- A low-melting alloy (Cerebend) bath at first performed well but quickly developed a mousse-like consistency

Rig Design: Rotary rig

Process Systems Engineering

PIN, 30th June 09, Newcastle

Rig Design: Schematic of the Cell

Process Systems Engineering

PIN, 30th June 09, Newcastle

Rig Design: Electrode and diaphragm

Process Systems Engineering

PIN, 30th June 09, Newcastle

Static rig results: Effect of inter-electrode space

Extra space for gas removal reduces cell voltage

Static rig results: Effect of inter-electrode space

Electrode: 1 layer Ni mesh; 30% KOH, 80 C.

More difficult gas removal gives higher cell voltage level and more violent voltage fluctuations

Static rig results: Electrode material

Process Systems Engineering

Potential v.s. Current Density for Defferent Materials, 30% KOH w/w, 75C, 1mm Spacer in each side of the diaphragm

Increase of actual area of electrodes helped to reduce the cell voltage, catalyst coating has little effect

PIN, 30th June 09, Newcastle

Static rig results: Electrode structure

Process Systems Engineering

Potential v.s. Current Density, Nickel Mesh, 30% KOH w/w, 75C 1mm spacer in each side of the diaphragm

Extra mesh layers reduces cell voltage especially at high current density

Static rig results: Alkaline concentration

Optimum electrolyte concentration is around 30%

Static rig: Summary

Process Systems Engineering

- As expected easier gas removal reduces cell voltage;
- Extra nickel electrode area tends to reduce cell voltage;
- Optimum electrolyte concentration is around 30%

Rotary rig results: Stainless steel foam

Process Systems Engineering

30% w/w KOH, 70 C, 0.5 mm spacer each side of diaphragm; Electrode: 2 layers of stainless steel foam

Higee benefit achieved up to ~10 g

Rotary rig results: Multi-layer nickel mesh

Higee benefit achieved up to ~10 g

Rotary rig results: Electrolyte concentration and temperature

Process Systems Engineering

Ambient temperature

Current Density 22.5 kA/m2, KOH, Ambient temperature, 1 mm spacer each side of diaphragm, 3 layers of Ni Mesh

Current Density 22.5 kA/m2, KOH, T bulk=81 C, 1 mm Spacer (With gas access) each side of diaphragm, 3 layers of Ni Mesh

T bulk=81 C

Optimum electrolyte concentration was around 30%

Rotary rig results: Electrolyte temperature

Current Density 13.5 kA/m2, 30% w/w KOH, 1 mm Spacer each side of diaphragm, 3 layers of Ni Mesh; 3.0 ——T=81 C 2.8 Cell Voltage, V 2.6 2.4 2.2 2.0 10 20 30 40 50 60 70 0 Rotation a/g

Rotary rig results: Spacer geometry

Current Density 4.5 kA/m2, 30% w/w KOH, Ambient T, with spacer each side of diaphragm, 3 layers of Ni Mesh 2.6 Cell Voltage, V 5.2 5.7 → Spacer 2 2.0 10 20 30 40 50 60 70 0 Rotation a/g

PIN, 30th June 09, Newcastle

Rotary rig results:

Cranfield

Rotary rig results: Traces of cell voltage

Process Systems Engineering

Similarity exists between the trace with high CD, High g and the trace with low CD, low g

Comparisons of Energy efficiency

Process Systems Engineering

	Energy Required System kWh/kg	HHV of Hydrogen (equivalent to 142 MJ/kg) kWh/kg	System Efficiency %	Production Pressure psig
Stuart: IMET 1000	53.4	39	73	360
Teledyne: EC-750	62.3	39	63	60-115
Proton: HOGEN 380	70.1	39	56	200
Norsk Hydro: Atmospheric Type No.5040 (5150 Amp DC)	53.5	39	73	435
Avalence: Hydrofiller 175	60.5	39	64	up to 10,000
This study	53.2	39	73	14.7

- Data source: (Johanna Ivy, 2004. Summary of Electrolytic Hydrogen Production: Milestone Completion Report. NREL/MP-560-36734)
- This study: pure nickel/stainless steel; atmospheric pressure

Conclusions

Process Systems Engineering

- The data telemetry system and current connector worked well;
- At normal cell operating conditions (30% KOH, ~75 C) most of the cell voltage benefits were achieved at low rotational speed (>10g);
- At 70 C Nickel mesh electrodes were more effective than stainless steel foam. Multiple layers also reduced cell voltage;
- The rotary cell voltage was about 0.25-0.5 V less than the equivalent static cell under similar operating conditions, depending on the current density;
- The cell voltages achieved without an effective electrode coating were comparable with the best industrial values using fully developed pressurised cells.

Acknowledgements

Process Systems Engineering

We wish to acknowledge the financial support of the **EPSRC UK** and the In-Kind Support of **Johnson Matthey Ltd** For this study

PIN, 30th June 09, Newcastle