

Coflore ACR

Update and Results

AM Technology Gilda Gasparini 17th PIN Meeting 30th June 2009, Newcastle University

Batch Reactors

Coflux®

- On-line monitoring
- Better temperature Control
- Faster heating and cooling
- Improved energy efficiency

Continuous Reactors

Coflore[™] ACR

- R&D and pilot plant
- Development tests
- Small productions for trials
- Small scale manufacture for high value products

EnC 2009

INP ENSIACET A7

Maison Européenne des Procédés Innovants (MEPI)

Summary of some results

Type of reaction	Phase system	Objective	Ancient Process	Intensified Process
Organometallic	monop hasic	Continuous process feasibility Safety	Batch 100 L 3h30 fed-batch T = -70°C	- Volume reduction (150 mL) and duration(180 s) - Change in temperature (-40 to -20°C)
Synthesis of a carbonate	dip hasic liquid- liquid	Selec tivity	Batch 4m ³ Low selectivity Excess of reactant 4h fed-batch	 Volume reduction (100mL) Increase of selectivity Decrease of reactant and solvent
Ionic liquid synthesis	monophasic, then diphasic G/L and 3-phase G/L/L	Exothermicity and mass transfer limitation	Batch 10 L 10h fed-batch 10 Kg/week	 Volume reduction 50 mL Duration reduction : 1 min. Productivity : 2 to 6 Kg/h
Hydrazine synthesis	Diphasic G/L	Continuous process feasibility	Adiabatic plug reactor	- Volume : 80 mL - Duration < 1 min. - Conversion increase

GPE-EPIC Congress, Venice, Italy, 14-17 June 2009

EnC 2009

INP ENSIACET A7

Maison Européenne des Procédés Innovants (MEPI)

Summary of some results

Type of reaction	Phase system	Objective	Ancient Process	Intensified Process
Organometallic	monop hasic	Continuous process feasibility Safety	Batch 100 L 3h30 fed-batch T = -70°C	 Volume reduction (150 mL) and duration(180 s) Change in temperature (-40 to -20°C)
Synthesis of a carbonate	dip hasic liquid- liquid	Selec tivity	Batch 4m ³ Low selectivity Excess of reactant 4h fed-batch	 Volume reduction (100mL) Increase of selectivity Decrease of reactant and solvent
Ionic liquid synthesis	monophasic, then diphasic G/L and 3-phase G/L/L	Exothermicity and mass transfer limitation	Batch 10 L 10h fed-batch 10 Kg/week	 Volume reduction 50 mL Duration reduction : 1 min. Productivity : 2 to 6 Kg/h
Hydrazine synthesis	Diphasic G/L	Continuous process feasibility	Adiabatic plug reactor	- Volume : 80 mL - Duration < 1 min. - Conversion increase

GPE-EPIC Congress, Venice, Italy, 14-17 June 2009

EnC 2009

INP ENSIACET A7

Maison Européenne des Procédés Innovants (MEPI)

Summary of some results

Type of reaction	Phase system	Objective	Ancient Process	Intensified Process
Organometallic	monop hasic	Continuous process feasibility Safety	Batch 100 L 3h30 fed-batch T = -70°C	- Volume reduction (150 mL) and duration(180 s) - Change in temperature (-40 to -20°C)
Synthesis of a carbonate	dip hasic liquid- liquid	Selec tivity	Batch 4m ³ Low selectivity Excess of reactant 4h fed-batch	 Volume reduction (100mL) Increase of selectivity Decrease of reactant and solvent
Ionic liquid synthesis	monop hasic, then dip hasic G/L and 3-phase G/L/L	Exothermicity and mass transfer limitation	Batch 10 L 10h fed-batch 10 Kg/w eek	- Volume reduction 50 mL - Duration reduction : 1 min - Productivity : 2 to 6 Kg/h
Hydrazine synthesis	Dip hasic G/L	Continuous process feasibility	Adiabatic plug reactor	- Volume : 80 mL - Duration < 1 min. - Conversion increase

GPE-EPIC Congress, Venice, Italy, 14-17 June 2009

GÊNI

Plug Flow

Plug flow is important for controlling reaction time and minimising dilution of reactants

Volume through the reactor

Plug Flow

Plug flow is important for controlling reaction time and minimising dilution of reactants

Plug Flow

Plug flow is important for controlling reaction time and minimising dilution of reactants

- Multi-stage CSTR with 10 cells in series
- Variable volume
- Minimal backmixing
- Constant heat
 transfer requirement
- Monitoring glass windows

ACR / 2

Agitator role #1:

Cell size is modified by altering the agitator/insert size

Volume through the reactor

ACR / 3

Agitator role #2:

The reactor block is mounting on an oscillating support. The loose elements provide good mixing to each cell

Agitator role #3: Design optimized to promote mixing and flow for different systems

Results - Mixing

Bourne reactions: Mixing sensitive reactions where low levels of impurities indicate good mixing

Conclusion 1:

The ACR exhibits a higher level of mixing efficiency over a wide range of throughput.

By permission of Imperial College

Results - Pressure Drop

Conclusion 2:

Thanks to its cellular design, the pressure drop across the ACR is up to a 3 order of magnitude lower than а tubular reactor.

ACR

At 100 seconds better mixing and DP is <0.01 bar

Results - Plug Flow

Good plug flow requires: good mixing a reasonable number of reaction cells no back mixing between cells

Conclusion 3:

Negligible back mixing has been validated hence the ACR delivers good plug flow behaviour.

By permission of Imperial College

Results - Solid Flow

PVA, 50-200 µm, 1.4 g/cm³

Approx 30% PVA in water

Conclusion 4:

Slurries can flow through the reactor in a controlled manner

By permission of IPOS – Huddersfield University

Results - Solid Catalyst

© AM Technology 2009

By permission of Heriot - Watt

Scale up

- Efficiently test a wide variety of operating conditions
- Optimize the chemistry
- Choose the most suitable manufacturing scale reactor.

ACR - Summary

ACR - A development reactor which allows the user to vary, throughput/residence time without affecting mixing

- Wide flow range: 5 5000 grams per hour
- Reaction time: 10 seconds to >100 hours

üg to kg production

ACR - Summary

ACR - A development reactor which allows the user to vary, throughput/residence time without affecting mixing

- Wide flow range: 5 5000 grams per hour
- Reaction time: 10 seconds to >100 hours
- Fluid types: Liquids, slurries, immiscible fluids, gas/liquids
- Low pressure drop: <0.001 bar at 5 l/hr for water
- Low minimum throughput: 1 reactor volume

üg to kg production

üDevelopment studies

Coflore ACR Flow reactors

Many thanks to:

Prof. Mark Keane Santiago Gòmez-Quero

Prof. John Atherton Dr Nick Powles

Prof. Nilay Shah Mayank Patel

Dr Mike Stillwell

Heriot-Watt University Heriot-Watt University

Huddersfield University Huddersfield University

Imperial College Imperial College

Micropore Technologies

THANK YOU

www.amtechuk.com