

Micromixing Characteristics in Spinning Disc Reactor

Dr Kamelia Boodhoo
Process Intensification Group
School of Chemical Engineering
& Advanced Materials
Newcastle University
United Kingdom

SDR operating principles

- Rotation of disc surface creates high centrifugal fields which promote thin film flow
 - Film thickness typically 50-500 μm
- Films are highly sheared and have numerous unstable surface ripples, giving rise to intense mixing
- SDR has been successfully applied to a range of processes which are micromixing dependent:
 - Polymerisation
 - Crystallisation
 - Competitive organic reactions

SDR micromixing characterisation

Test reaction studied:

$$H_2BO_3^-{}_{(aq)} + H^+{}_{(aq)} \Leftrightarrow H_3BO_{3(aq)} \qquad \text{Quasi-instantaneous Acid-base neutralization}$$

$$5I^-{}_{(aq)} + IO_3^-{}_{(aq)} + 6H^+{}_{(aq)} \Leftrightarrow 3I_{2(aq)} + 3H_2O_{(aq)} \qquad \textbf{Dushman reaction, fast}$$

$$I_2 + I^- \Leftrightarrow I_3^-{}_{(aq)} \qquad \text{Quasi-instantaneous}$$

Concentration of tri-iodide estimated using UV-Vis
 Spectroscopy and Beer-Lambert law

$$\left[I^{-_{3}}\right] = \frac{D_{\lambda}}{\varepsilon_{\lambda} \times l}$$

SDR micromixing characterisation

- Measures of micromixing efficiency:
- Segregation index, Xs

Defined as the actual yield of the undesired product, Y compared to its maximum yield, Yst:

$$X_{S} = \frac{Y}{Y_{ST}}$$

Perfect micromixing: $X_S = 0$, Total segregation: $X_S = 1$, Partial segregation: $0 < X_S < 1$

- Effect of the following parameters on micromixing efficiency assessed in SDR:
 - Disc speed
 - Feed flowrate
 - Feed viscosity
 - Acid concentration

Effect of disc speed and feed flowrate on Xs

Effect of acid concentration on Xs

Effect of feed viscosity on Xs in SDR

Micromixing time: SDR vs. STR

Summary

- Disc speed, feed flowrate and feed viscosity are highly influential parameters in micromixing process in SDR
- Lower micromixing time is achieved in SDR than in conventional STR, resulting in improved product quality (e.g crystal size distribution and molecular weight distribution)
 - This is related to higher power dissipation generated in SDR

Acknowledgements

- Salah Al-Hengari, PhD student
- □ Libyan Petroleum Institute (LPI)

Questions?