Introduction to Chromatide

- Don Wellings CSO (founding director)
- Saeed Gulzar COO (founding director)
- **Clare Hildred CEO**
- **Dean Simpkin Senior Scientist**
- **Rob Berry Senior Scientist**
- Ron Cotton Senior Scientist
- Scientific advisory board Brian Adger Nigel Slater Eric Atherton

Business focus

Custom purification

Custom peptide synthesis

Custom oligonucleotide synthesis

Custom polymer synthesis

Chromatide IP

Two patents

Polymer encapsulation (PCT filed 2007)

Within a rigid support skeleton

Micro reactors (PCT filed 2008)

Applications

Affinity chromatography – initial focus **Enzyme immobilisation – via R&D Grant** Peptides - ongoing **Oligonucleotides** - ongoing Chiral chromatography Transition metal catalysis Cell culture - via collaboration with SCC Slow release

Benefits of Polymer Encapsulation

Feature	Benefit		
Much softer polymers can be encapsulated in rigid skeleton	Combines benefits of highly cross linked rigid polymers and low cross-linked polymer gels		
	Mechanical robustness		
Access to active sites in the polymer is dramatically improved	Presenting the polymer backbone in a quasi- homogeneous state improves process efficiency		
Cross-linking can be reduced to minimum levels sufficient to hold polymer matrix together	Access to active sites is unrestricted which improves efficiency		
	Full capacity of polymer backbone is possible		
Uniform bead size	Lowers costs of production by eliminating need to classify according to particle size		
	Regular column bed formation		
Lower cost, mass produced stationary phase components	Reduces production and processing costs		
Can be used in expanded bed, fluidized bed and traditional column based systems	Enables faster processing times, easy scale up and improved dynamic binding capacity		

Chromatide technology

Chromatide technology

Used in textile and jewellery trade

How are seed beads made?

Commercial sources?

Mass produced

30-40 tons per day

Japan, China, India, Poland

Smallest commercially available cost from €1-6/kg

Japanese beads have very precise dimensions

Surface Chemistry

Surface Chemistry

Surface Chemistry

How do we get the polymer in the hole?

Mix monomer solution with beads Drain off excess monomer solution Monomer solution is retained by capillary action Initiate polymerisation Remove small particles of polymer from outside of beads by abrasion

Polydimethylacrylamide

Polydimethylacrylamide (Ninhydrin)

Bead capacity and size

Smaller beads!

Custom made seed beads!

~40% of bead volume is polymer (determined by Fmoc analysis)

Enzyme immobilisation

Polymer/beads

Types Linkers

Enzyme immobilisation

Penicillin G amidase Catalase Glucose oxidase

Polymerisations

Polydimethyl acrylamide

2-Aminoethylmethacrylate hydrochloride

Acryloylsarcosine methyl ester (followed by treatment with 1,2-diaminoethane)

CLEAR (PEG based)

Polymer loading Cross linking up to 2 mmole/g 3 mole% of monomers

Enzyme immobilisation

Penicillin amidase

Penicillin G Amidase

Used in immobilised form in the manufacture of Amoxycillin

Converts Penicillin G to 6-amino penicinillic acid

Penicillin G Amidase

Activation of support bound amino groups and amino groups on enzyme with glutaraldehyde

Potassium phosphate buffer, pH 7

Activity assay:

Penicillin G conversion to 6-amino penicillanic acid (Dimethylaminobenzaldehyde at 37°C, 415nm, 1 unit is amount of enzyme converting 1µmole in 1 minute under assay conditions)

Preliminary Results

Ref.	Enzyme	Polymer function	Enzyme linkage	Activity (U/g)
66	Penicillin G Amidase	amino ethyl methacrylate:HCl	glutaraldehyde	10.1
76	Penicillin G Amidase	acryloyl sarcosine methyl ester/1,2-diaminoethane	glutaraldehyde	10.1
82	Catalase	amino ethyl methacrylate:HCl	glutaraldehyde	5.3
83	Catalase	amino ethyl methacrylate:HCl	glutaraldehyde	8.1

Activity Comparisons

Activity of "wet" beads 9 U/cm³

Activity of "dry" beads 13 U/cm³

Activity of "dry" polymer in beads 420 U/cm³

Penicillin G amidase on Eupergit has an activity of ~120U/g

Latest Results

Activity now at 27U/cm³ of immobilised enzyme

Activity of immobilised enzyme per gram of polymer is now more than 10 times greater than Eupergit

>50% of enzymatic activity is retained upon immobilisation

Current Focus in Biocatalysis

Immobilisation of Lipases

Immobilisation of whole cells

Yeast and Bacteria

Ketoreductase immobilisation

PdEncat[™]

The Future for Immobilised Biocatalysts

More efficient use of catalyst and polymer

Move towards continuous flow systems

Multi-column processes in series

Environmentally friendly chemistry

Acknowledgements

Dean Simpkin

Our industrial and academic collaborators

Matthew Tidmarsh

