

Equipment selection within the IMPULSE Multiscale Process Design framework

Dr Jeremy M Double Britest Ltd Project IMPULSE TB.3 task coordinator <jeremy.double@britest.co.uk>

PULSE Introduction

- Structure of presentation
 - Introduction and context
 - Development method
 - > Approach
 - Mapping process tasks to equipment
 - Technology Option Identification Methodology (TOIM)
 - Equipment Database
 - ➤ Conclusions

PULSE The industrial context

- Low tonnage chemicals are usually made by batch processing
- Continuous processes are only considered if a batch process is too difficult
- Chemical engineers and chemists in the batch industry are often not familiar with continuous processes and equipment
- Thus equipment is often predetermined
- The IMPULSE team hopes to change this...

Georgius Agricola, *De Re Metallica*, 1556.

PULSE Technology Option Identification — Aim

- At the end of IMPULSE, we want to have a methodology to help the designer select the best technology option for a particular process need, using structure of an appropriate scale
- ✤ To do this, we need:
 - 1. standard methods for characterising equipment
 - 2. a database of equipment
 - 3. methods for characterising processes to identify equipment needs
 - 4. a software tool that finds equipment in the database that would meet the process need

Technology Option Identification in context

[©] Britest Ltd 2008: 5

PULSE Development method

- Collaborative work by experts from
 - Britest and its member organisations
 - Forschungszentrum Karlsruhe (FZK)
 - Institut f
 ür Mikrotechnik Mainz (IMM)
 - ➤ CNRS-LGC, Toulouse
 - University of Manchester
- Brainstorming, prototype methods, feedback, revision
- Methods are based on the underlying science and the practical experience of the team

- 1. Understand the process in terms of the fundamental physics and chemistry
 - reactions, desired and undesired
 - phases, mixing etc.
 - rate determining phenomenon?
 - > qualitative; quantitative where necessary
- 2. From this process understanding, define what the process needs the equipment to deliver
 - residence time, mass & heat transfer etc.
- 3. Find equipment that can meet these needs
 - database of equipment characteristics
 - searching methodology

PULSE Mapping process tasks to equipment

- A process is a sequence of tasks carried out to transform feedstocks into desired products
- The whole process might better meet the business needs if:
 - Some tasks were combined in a single item of equipment; or
 - Some individual tasks were split among two or more items of equipment in series
- So the mapping of tasks to equipment is important for the viability of the whole process

PULSE Splitting tasks

- 2nd order reaction in plug flow reactor
- High reaction rate and heat output in first 10% of reactor volume
- Much lower heat transfer requirement in remaining volume
- Splitting the reaction task between two equipment items gives a cheaper overall process

Seneral principle for splitting tasks:

Splitting of a task should be considered where the required duty varies widely as the task progresses

PULSE Combining tasks

- When deciding whether to consider combining tasks all these criteria should be met:
 - 1. the materials present in all of the tasks to be combined should be compatible with each other,
 - 2. the required processing conditions should be similar, and
 - 3. the duties required of the equipment should be similar
- If duties or processing conditions for the tasks being combined are too far apart, the resulting compromises lead to a higher overall cost

Equipment characteristics

- What characteristics of equipment will allow selection of the best technology option to meet a process need?
- Scharacteristics must be:
 - related to the process needs (duties)
 - > measurable using cheap, safe tests
- ♦ A list of characteristics was developed
 - > to facilitate the equipment duty definition
 - to define the characteristics of equipment that must be measured
 - to provide a structure for the equipment database

Equipment characteristics

01	Equipment name	
02	Unique identifier	

		Material balance & residence time	
03	*	Total mass flow into the device	Range, kg/s
04	*	Volume	Range, m ³
05	*	Residence time gas	Order of magnitude range, s
06	*	Residence time light liquid	Order of magnitude range, s
07	*	Residence time heavy liquid	Order of magnitude range, s
80	*	Residence time solid	Order of magnitude range, s

		Mixing	
09	*	Bulk mixing time to achieve 95% mixing, t95	Order of magnitude range, s
10	*	Micromixing characteristic mixing time	Order of magnitude range, s

PULSE Database status

- Structure and searching method is complete
 - some tweaks may be needed in the light of experience
- Solution More data are needed to populate the database
 - Please contact Jeremy Double if you would like to help
 - ➤ a form and instructions will be provided

PULSE Simple example

- Single-liquid-phase reactor with heat transfer duty and no other special requirements
 - ➤ reaction time 10 minutes
 - Throughput of 24 L/min
 - ➢ heat evolution of 20 kW
 - ≥ 20°C temperature difference available
 - process fluids are water-like
 - no adjustment for physical properties
- Required volume
 - Throughput × reaction time
 - > 24 L/min \times 10 min = 240 L = 0.24 m³

✤ To look at the heat transfer capability, use the heat transfer intensity parameter, UA/V

 $Q = U A \Delta T$

SO

 $\frac{UA}{V} = \frac{Q}{\Delta TV} = \frac{20000 \text{ W}}{20 \text{ K} \times 0.240 \text{ m}^3} = 4167 \text{ W/ K m}^3$

batch stirred tank ~700 W/K m³ not OK
 tubular reactor ~70 000 W/K m³ OK
 microreactor ~5 × 10⁷ W/K m³ OK

PULSE Conclusions

- By providing a structured approach to equipment characterisation based on:
 - 1. a consideration of process needs
 - 2. a set of standard tests for making measurements according to this approach
 - 3. a database tool for recording the characteristics of each type of equipment

rapid shortlisting of appropriate process equipment will be facilitated

thus making process development quicker and more effective

FP7 PILLS Project

© Britest Ltd 2008: 20