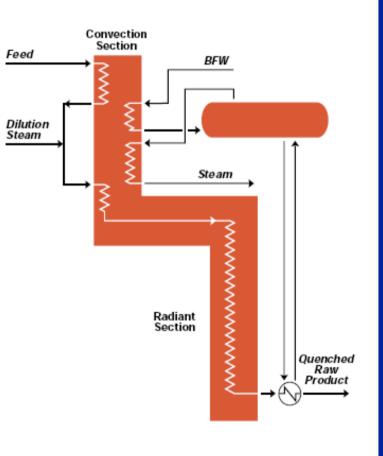
# Feasibility Study of a Turbo-Cracker

M. Wang, C. Ramshaw and H. Yeung Cranfield University

*Friday Nov.* 21 2007

# Outline

- Thermal Cracking Furnace: Current Status
- The Idea of Turbo-Cracker
- Modelling of Propane Pyrolysis
  - Reaction Kinetics in Froment 1975
  - Simulation based on pilot plant in Froment 1975
- Case Studies
- Simulation of a Turbo-Cracker
- Conclusions

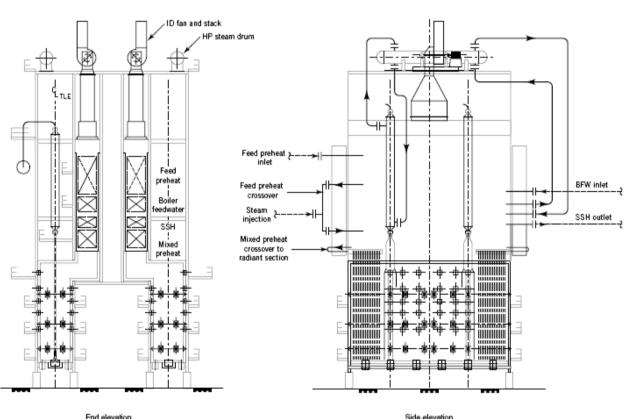

### Thermal Cracking Furnace: Current Status

•Ethylene is the largest volume building block for many petrochemicals.

•Currently thermal cracking technology provided by ABB Lummus Global, Shaw Stone and Webster, Kellogg Brown & Root, Linde, and KTI.

 Thermal Cracking Furnace: tubular reactors where thermal cracking of hydrocarbon takes place.

Cracking reactions are endothermic.
 Lots of energy transferred through the tube wall.




## Thermal Cracking Furnace: Current Status

•Coke is formed during pyrolysis. Steam is added as a diluent to the feed.

 Product at the tubular reactor outlet must be cooled down quickly to avoid any further cracking.

•Currently transferline exchanger is used.



# Thermal Cracking Furnace: Current Status

 Disadvantage/drawback in existing Thermal Cracking Furnace

- Since thermal cracking reaction is very sensitive to temperature, high heat flux through tube walls is required, high surface temperature is involved.
- At this high surface temperature, heavy coke deposits is formed during normal operation. De-coking every 40 to 100 days. Coking limits heat transfer, also reduces ethylene selectivity.
- Thermal Cracking Furnace is huge in volume (approximately 10,000 m<sup>3</sup>).

•Use Compressor and Turbine to replace the existing thermal cracking furnace, so-called Turbo-Cracker.

- •Heat is provided by compression in the Compressor of a Gas Turbine (GT).
- Product at the tubular reactor outlet is expanded with the Turbine of a Gas Turbine (GT).

### The Idea of Turbo-Cracker

#### Advantages

- Higher temperature of the mixture of hydrocarbon and steam will increase the selectivity of ethylene.
- Residence time should be much shorter.
- Product at the tubular reactor outlet expands rapidly in the Turbine. This also helps to improve ethylene selectivity.
- Coking will be less severe since no heat is transferred across the tube wall.
- One GT (Compressor and Turbine only) can replace several existing thermal cracking furnaces due to its high processing capacity.

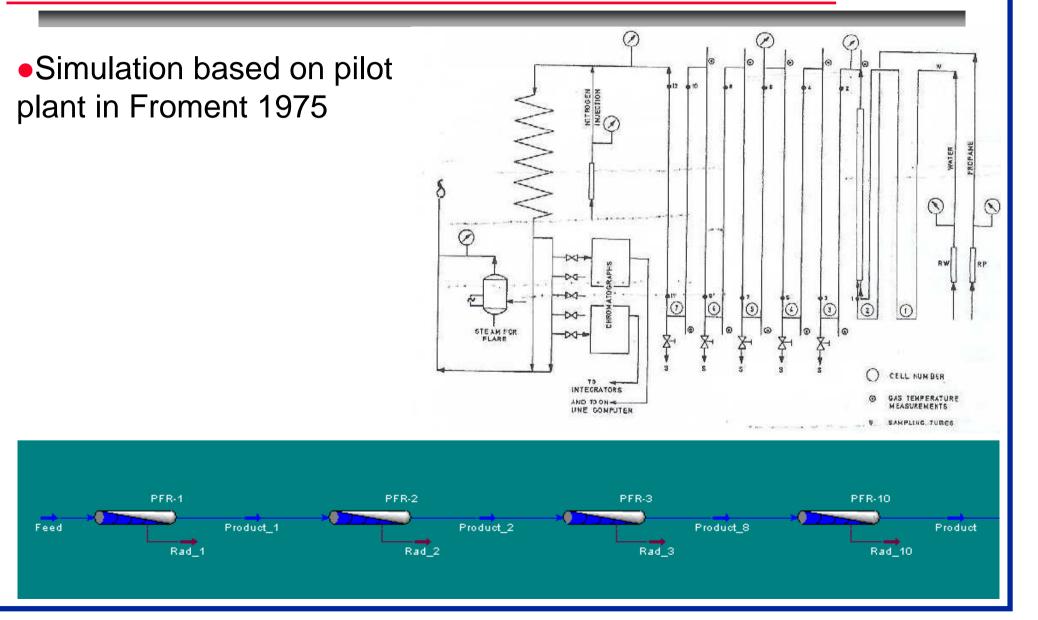
#### Reaction Scheme in Froment (1975)

| (1) $C_3H_8 \rightarrow C_2H_4 + CH_4$           | A=1.6E09  | E=44 kcal/mole |
|--------------------------------------------------|-----------|----------------|
| (2) $C_3H_8 \rightarrow C_3H_6 + H_2$            | A=2.0E09  | E=44 kcal/mole |
| (3) $2C_3H_8 \rightarrow C_2H_6 + C_4H_{10}$     | A=2.2E09  | E=54 kcal/mole |
| (4) $2C_3H_8 \rightarrow C_3H_6 + C_2H_6 + CH_4$ | A=1.1E09  | E=48 kcal/mole |
| (5) $C_2H_6 \rightarrow C_2H_4 + H_2$            | A=0.34E13 | E=60 kcal/mole |
| (6) $2C_2H_6 \rightarrow C_2H_4 + 2CH_4$         | A=3.9E12  | E=67 kcal/mole |
| (7) $2C_2H_6 \rightarrow C_3H_8 + CH_4$          | A=0.5E11  | E=50 kcal/mole |
| $(8) \ 2C_3H_6 \rightarrow 3C_2H_4$              | A=1.3E10  | E=50 kcal/mole |
| $(9) C_3H_6 + H_2 \rightarrow C_2H_4 + CH_4$     | A=1.0E15  | E=60 kcal/mole |
| $(10)C_{3}H_{6} \rightarrow C_{2}H_{2} + CH_{4}$ | A=1.4E10  | E=50 kcal/mole |
| (11) $C_2H_4 + H_2 \rightarrow C_2H_6$           | A=0.68E13 | E=52 kcal/mole |

Van Damme, P.S., Narayanan, S. and Froment, G.F. (1975), Thermal Cracking of Propane and Propane-Propylene Mixtures: Pilot Plant versus Industrial Data, *AIChE J*, Vol. 21, No. 6 (pp1065-1073) *Friday Nov. 21 2007* 

#### Reaction Scheme in Froment (1975)

| (12) $C_2H_4 \rightarrow C_2H_2 + H_2$    | A=6.0E13                              | E=76kcal/mole |
|-------------------------------------------|---------------------------------------|---------------|
| (13) $3C_2H_4 \rightarrow 2C_3H_6$        | A=1.3E11                              | E=45kcal/mole |
| (14) $2C_2H_2 + H_2 \rightarrow C_4H_6$   | A=6.0E13                              | E=45kcal/mole |
| (15) $C_2H_2 + 2H_2O \rightarrow 2CO$     | + 3H <sub>2</sub> A=3.5E <sup>2</sup> | E=62kcal/mole |
| (16) $C_2H_2 + C_3H_6 \rightarrow C_5H_8$ | A=9.0E <sup>2</sup>                   | E=64kcal/mole |


Of these 16 reactions,

(5) and (11) are forward and reverse reactions;

(8) and (13) are forward and reverse reactions;

Van Damme, P.S., Narayanan, S. and Froment, G.F. (1975), Thermal Cracking of Propane and Propane-Propylene Mixtures: Pilot Plant versus Industrial Data, *AIChE J*, Vol. 21, No. 6 (pp1065-1073)

Friday Nov. 21 2007



#### Simulation based on pilot plant in Froment (1975)

Feed conditions

|         | Steam dilution rate | 0.4 kg steam / kg C3H8 | (i.e. steam mass fraction 0.2857) |
|---------|---------------------|------------------------|-----------------------------------|
|         | Pressure            | 3 bar                  |                                   |
|         | Temperature         | 600 °C                 |                                   |
|         | Mass Flowrate       | 0.7655 kg/s            |                                   |
| Produc  | t conditions        |                        |                                   |
|         | Pressure            | 2 bar                  |                                   |
|         | Temperature         | 838 °C                 |                                   |
|         | Mass Flowrate       | 0.7655 kg/s            |                                   |
| Plug Fl | ow Reactor details  |                        |                                   |
|         | Length              | 95m                    |                                   |
|         | Diameter            | 0.108m                 |                                   |
|         | Wall thickness      | 0.008m                 |                                   |
|         |                     |                        |                                   |

# Modelling of Propane Pyrolysis in HYSYS

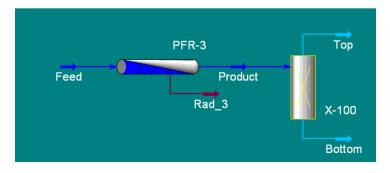
Conclusions from simulating the pilot plant in Froment (1975):

- •At the same operating conditions (P, T and flowrate) for the PFR as described in Froment (1975)
- The product composition is close to those data published in Froment (1975)

•This shows the HYSYS model can be used as the basis of various case studies.

# **Case Studies**

•To investigate the relationship between tubular reactor outlet temperature and the residence time


- •The criterion is to achieve the same propane conversion.
- •To investigate the pressure impact

The reaction kinetics in Froment (1975) were used. These were obtained from 650 °C to 900 °C and under pressure about 3 bars.
Actually wider pressure range and temperature range are used in the Cases studied.

## **Case Studies**

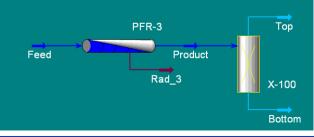
#### Base Case Design

- •Use the Reaction Scheme in Froment (1975)
- Feed same as before
- •PFR details (D=0.108m, L=95m and one long tube only)
- Operating conditions slightly changed
  - Pressure decreases linearly from 3 bar to 2 bar
  - •Temperature increases linearly from 600 C to 880 C (Since only outlet temperature at 880 C, can the propane conversion and ethylene selectivity be similar as before).
  - •Residence time: about 970 ms (calculated with average density)



Friday Nov. 21 2007

### **Case Studies**


Summary of results from cases studied

- Same mass flowrate for mixture of propane and steam
- Temperature still around 3 bar
- •Reactor length varied from 95 m to 25 m, 6m and 2.5 m
- •Residence time decrease about 0.9s to 0.28s, 0.06s and 0.027s

•Outlet temperature increased 880C to 965 C, 1084 C and 1170 C to achieve the same propane conversion.

•For 2.5m length reactor, when pressure increased from 3 bar to 6 bar, 9 bar, outlet temperature required from 1170 C decrease to 1099 C, 1061 C and the product yield for ethylene and propylene increased.

This means increasing pressure helps to speed up reaction.



### Simulation of Turbo-Cracker

#### A standard Compressor is chosen with

- Compressor Pressure Ratio 23.3:1
- 17 stages
- Mass Flow rate 84.5 kg/s (for air)
- Diameter approximately 2 m and 2.5 m in length
- A standard Turbine is chosen with
  - •6 stage power turbine
  - Diameter approximately 1.5 m and 1.0 m in length
- The same feed is used as in Froment (1975)
- The results from the simulation indicates that
  - •Slightly more steam is required to achieve the same propane conversion.
  - •One Compressor and Turbine can process 4-5 times of the flowrate of existing thermal cracking furnaces.

### Conclusions

 Preliminary simulation indicates that Turbo-Cracker concept worth exploring in more detail.

•The main advantage is that one Turbo-Cracker can replace 4-5 conventional Thermal Cracking Furnaces and is much smaller.

#### Main Challenges

•The kinetics of thermal cracking of propane and naphtha under higher pressure are not clear.

- Information on existing commercial thermal cracking furnace not enough.
- •Compressor requires more power than Turbine can generate.

