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Asymmetric Transfer Hydrogenation
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Mesh Reactor
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Average Maximum )
: ) Thickness Open .
Mesh pore size pore size a Material
(um)2 (1 m)b (1 m) area
Internetmesh 76 100 50 23%,a Stainless
steel 304

(a: From manufacturer, b: Determined from optical pictures)




Breakthrough Studies
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Set-up for Acetone Stripping
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Analytical Modeling

- Q is related to B is proportional to
« ratio of gas flowrate  *overall mass transfer
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Effect of Nitrogen Flowrate
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Internetmesh; dry N,,; T=30°C; solvent: isopropanol; liquid inlet flowrate
0.1ml/min, AP: pressure difference (P,:-P,i4)=30 mm H,O; Acetone
concentration in the liquid inlet=0.1M



Effect of Liquid Flowrate
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flowrate 70ml/min, AP: pressure difference (P ,;-Pj,,4)=30 mm H,0;
liquid inlet acetone concentration =0.1M



Acetone Stripping in Batch Reactor and Mesh Contactor
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Mesh reactor: Dry N, flowrate: 70ml/min; AP=50mmH,O; Temperature=30°C;

Batch reactor: Dry N, flowrate: 800ml/min; Liquid volume:250ml; temperature=30°C



Acetone Stripping with Nitrogen Bubbled in IPA

Fi.n C Aciin C Ac,out Fl.out Acetone removed
N,
mil/min M M ml/min mol/min
b 0.1 0.107 0.037 0.079 0.0077
Y 0.1 0.108 0.038 0.078 0.0079
Bubbled in 0.1 0.102 0.044 0.098 0.0059
IPA 0.1 0.102 0.045 0.097 0.0058

(T=30°C; pressure difference (Pg,5-Pjiquig)=30 mm H,O; Nitrogen
flowrate=70ml/min )



Asymmetric Transfer Hydrogenation in Batch and Mesh Reactor
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Temperature: 300C, [Substrate]: 0.33M, [Substrate]/[Catalyst]=1000, In mesh reactor N,=70ml/min bubbled
in IPA. In batch reactor, N, flowrate=800ml/min, Reactor volume=500ml; Reaction solution volume=250ml.



IPA Top Up During Asymmetric Transfer Hydrogenation
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Mathematical Model
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Model Validation o]
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Effect of Increasing Stripping Gas Flowrate
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Effect of Stripping Gas Presaturation with Solvent
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Transverse Concentration Profiles
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Comparison with Experiments

« Good agreement
between model and
experimental results
for conversion

» Discrepancies
possibly due to
velocity variations
along the height and
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channel
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Reactant radial concentration gradients
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Concluding Remarks

1. Mesh reactor is very efficient for stripping acetone from isopropanol

2. Higher gas/liquid flowrate ratio gives better acetone stripping
performance

3. Bubbling nitrogen into isopropanol can prevent solvent loss

4. Mesh reactor gives better performance for acetone stripping and
asymmetric transfer hydrogenation than traditional batch reactor

5. Higher enantioselectivity was obtained with isopropanol top up during
the reaction than using dry nitrogen
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