

Intensified Acetone Stripping and Asymmetric Transfer Hydrogenation in a Mesh Contactor

A. Gavriilidis Dept of Chemical Engineering University College London

Outline

- Asymmetric transfer hydrogenation
- Mesh reactor
- Acetone stripping in mesh reactor
- Asymmetric transfer hydrogenation in mesh reactor
- Mathematical model for stripping and reaction
- Conclusions

Asymmetric Transfer Hydrogenation

Reversible reaction

Backwards reaction limits the reaction conversion and enantioselectivity
Acetone is the most volatile compound

Acetone removal

Mesh Reactor

Mesh

Mesh	Average pore size (µ m)ª	Maximum pore size (µ m) ^b	Thickness (µ m)ª	Open area	Material
Internetmesh	76	100	50	23% ^a	Stainless steel 304

(a: From manufacturer, b: Determined from optical pictures)

Breakthrough Studies

$$\Delta P = \frac{2\gamma \cos \theta}{r}$$

$$\Delta P_{B,IPA} = P_L - P_G = -\frac{2\gamma\cos(0+90)}{r} = 0$$
$$\Delta P_{B,N_2} = P_G - P_L = \frac{2\gamma\cos(0)}{r} = \frac{2\gamma}{r}$$

Mesh	Breakthrough pi (G → L) P _G -P _L (mm H	ressure ₂ O)	Breakthrough pressure (L → G) P _L -P _G (mm H ₂ O)		
	Experiment	Model*	Experiment	Model*	
Internetmesh	70~80	84	-5	0	

Set-up for Acetone Stripping

Analytical Modeling

$$\frac{C_{out}}{C_{in}} = \frac{1}{1+\Omega} \left\{ 1+\Omega \cdot \exp\left[-\beta \cdot \left(1+\frac{1}{\Omega}\right) \cdot H\right] \right\}$$
$$\Omega = \frac{F_g}{F_1} \cdot \frac{P}{R_g T} \cdot \frac{1}{K_{eq}} \qquad \beta = \frac{K_T \cdot \varepsilon \cdot \tau_1}{\delta_1 \cdot L}$$

Ω is related to ratio of gas flowrate over liquid flowrate volatile component solubility

$\boldsymbol{\beta}$ is proportional to

•overall mass transfer•liquid residence time•open area of mesh

$$k_{m} = \frac{D_{Acetone-isopropanol} \cdot \varepsilon}{\delta_{m} \cdot \tau} \left| \frac{1}{K_{T}} = \frac{1}{k_{1}} + \frac{1}{k_{m}} + \frac{K_{eq}}{k_{g}} \right|$$

Effect of Nitrogen Flowrate

Internetmesh; dry N₂; T=30°C; solvent: isopropanol; liquid inlet flowrate 0.1ml/min, ΔP : pressure difference (P_{gas}-P_{liquid})=30 mm H₂O; Acetone concentration in the liquid inlet=0.1M

Effect of Liquid Flowrate

Internetmesh; dry N₂; T=30°C; solvent: isopropanol; Nitrogen flowrate 70ml/min, ΔP : pressure difference (P_{gas}-P_{liquid})=30 mm H₂O; liquid inlet acetone concentration =0.1M

[•]UCI

Acetone Stripping in Batch Reactor and Mesh Contactor

Mesh reactor: Dry N₂ flowrate: 70ml/min; $\Delta P=50mmH_2O$; Temperature=30°C; Batch reactor: Dry N₂ flowrate: 800ml/min; Liquid volume:250ml; temperature=30°C

Acetone Stripping with Nitrogen Bubbled in IPA

N ₂	F _{L-in}	C _{Ac,in}	C _{Ac,out}	F _{L-out}	Acetone removed
	ml/min	М	М	ml/min	mol/min
Dry	0.1	0.107	0.037	0.079	0.0077
	0.1	0.108	0.038	0.078	0.0079
Bubbled in IPA	0.1	0.102	0.044	0.098	0.0059
	0.1	0.102	0.045	0.097	0.0058

(T=30°C; pressure difference (P_{gas} - P_{liquid})=30 mm H₂O; Nitrogen flowrate=70ml/min)

^AUCI

Asymmetric Transfer Hydrogenation in Batch and Mesh Reactor

Temperature: 30oC, [Substrate]: 0.33M, [Substrate]/[Catalyst]=1000, In mesh reactor N_2 =70ml/min bubbled in IPA. In batch reactor, N_2 flowrate=800ml/min, Reactor volume=500ml; Reaction solution volume=250ml.

[±]UCI

IPA Top Up During Asymmetric Transfer Hydrogenation

Mathematical Model

Mole balances in the liquid phase

Decrease of liquid flowrate

Mole balance in the mesh

Mole balance in the gas phase

[±]UCl

Model Validation

The model predicts well the behaviour of the contactor during acetone stripping from an acetoneisopropanol solution

Experimental

Effect of Increasing Stripping Gas Flowrate

 Increasing gas flowrate improves acetone removal

 Axial peak in acetone is due to isopropanol evaporation

The stripping gas is saturated with isopropanol within the first 10% of the contactor length

^aUCI

Effect of Stripping Gas Presaturation with Solvent

 Presaturation removes the acetone peak

 Liquid flowrate remains practically constant

Transverse Concentration Profiles

Comparison with Experiments

 Good agreement between model and experimental results for conversion

 Discrepancies possibly due to velocity variations along the height and the width of the channel

Conversion

- ---- Mesh Reactor Model
 - Batch Reactor Experimental

Reactant radial concentration gradients

Radial concentration gradients obtained for the reactant are small

Concluding Remarks

- 1. Mesh reactor is very efficient for stripping acetone from isopropanol
- 2. Higher gas/liquid flowrate ratio gives better acetone stripping performance
- 3. Bubbling nitrogen into isopropanol can prevent solvent loss
- 4. Mesh reactor gives better performance for acetone stripping and asymmetric transfer hydrogenation than traditional batch reactor
- 5. Higher enantioselectivity was obtained with isopropanol top up during the reaction than using dry nitrogen

Acknowledgements: X. Sun, M. Zanfir

EPSRC, DTI for supporting the "Micrograms to Multikilos" LINK project

Northern Ireland is a "visitors' dream" according to conference delegates. Feedback from the almost 1000 delegates attending the 2006 annual conference of the Association of University Administrators at Queen's University has included tributes to the

[•]UCI

Plenary Lecture Topics

- 1. Automotive Emission Control (Professor Edward Jobson, Volvo, Sweden)
- 2. Renewables for Chemicals and Fuels (Professor Pierre Gallezot, CNRS, France)
- 3. Sustainability through Greener Processing (Professor Volker Hessel, Eindhoven University of Technology / IMM Mainz)

Keynote Lecture Topics

- A. Catalysis for Clean Air and Water
- B. Catalysis for the Production of Clean Fuels
- C. Catalysis and the Challenge of Global Warming
- D. Catalysis in a Sustainable Fine Chemical Industry

Session Topics and (Session Chairs)

Automotive emission control (Professor Magnus Skoglund)

Catalysis for the production of clean fuels, including from renewables (**Professor Graham Hutchings**)

Catalysis in a sustainable fine chemical industry, to include chemicals from renewables (**Professor David Jackson**)

Greener process intensification (Professor Asterios Gavrillidis)

Catalysis for clean air and water (Professor Gabriele Centi)

Catalysis for sustainable energy conversion, to include aspects of global warming and CO2 removal/recycle (Professor Martin Atkins)

http://www.centacat.qub.ac.uk/5icec/