

# Integrated Project IMPULSE

Dr. Alexis Bazzanella, DECHEMA, Frankfurt (Germany)





# ✤ The IMPULSE Project

- ♦ What is Structured Multiscale Processing?
- ♦ What Vision for the process industries does it support?
- ♦ How do we get there?

# **PULSE** Situation in the process industries

#### **Pressures on the process industries**

- Emergence of low cost producers in developing nations
- Increasing costs in meeting the Environment, Safety and Health regulations
- Markets where agility of manufacture is critical to performance
- Commoditisation of products, manufacturing technologies and design capabilities;
- Public and political concerns over the use of "chemicals" in society.

#### **Shortcomings**

- Traditional processing equipment often does not deliver conditions that are ideal for the process, compromising yield, efficiency;
- Traditional equipment and supply chains often hold large quantities of materials that present safety and environmental risks;
- Traditional approaches to scale-up of manufacture rely on a partly heuristic approach, and more reliable scale-up is desirable

# *PULSE* Vision of multiscale processing

**Fact:** Industrial uptake of PI has been disappointingly slow, and the potential benefits in risk reduction, processing efficiency and lower costs have not been accessed;

It is clear that innovation will only take hold if business drivers are being met.

**Vision:** Multiscale processing, as developed and promoted by IMPULSE extends and refocuses the PI approach, and equally is fully consistent with the ideas of operational excellence. Instead of starting from a device focus, the philosophy is

To match process systems closely to the needs of the process, commerce and society – "precision processing".



#### The IMPULSE Project : a European response to a global challenge

Integrated Multiscale Process Units with Locally **S**tructured Elements

#### Project goal :

Effective targeted integration of innovative process equipment (such as microreactors, compact heat exchangers, thin–film devices and other micro and / or meso–structured components) to attain radical performance enhancement for whole process

Industrial leaders : GSK, Degussa, P&G, Siemens

**Consortium : 20 partners** from 8 European countries

Project resources : 17 M€ over 4 years

(of which 10,5 M€ from the European Commission)





6th European Framework Programme for Research and Technological Development





| INDUSTRIAL PRODUCERS<br>(4 Partners)                                    |                                                                                           | RESEARCH INSTITUTES<br>and UNIVERSITIES<br>(12 Partners)                                               |                                                                           |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| GlaxoSK (UK) :<br>Degussa (D) :<br>P & G (UK) :<br>Solvent Innov. (D) : | Pharmaceuticals<br>Specialty chemicals<br>Consumer products<br>Ionic liquids (*)          | CNRS (F) : LSGC–Nancy :<br>LGC–Toulouse :<br>LGPC–Lyon :<br>INPL–Nancy (F) :                           | Chem. Proc. Eng.<br>Chem. Proc. Eng.<br>Cat. Reac. Eng.<br>Chem. Eng.     |
|                                                                         |                                                                                           | Univ. of Manchester (UK) :                                                                             | Process Innov.,<br>Proc. Economics                                        |
| <u>INDUSTRIAL SERVICE</u><br><u>GROUPS</u><br>(4 Partners)              |                                                                                           | RWTH–Aachen (D) :<br>TNO (NL) :<br>IMM–Mainz (D) :<br>FZK-Karlsruhe (D) :                              | Physical Chem.<br>Eco-efficiency,<br>Microreac. Tech.<br>Microreac. Tech. |
| Britest (UK) :<br>Siemens (D) :<br>Dechema (D) :<br>ARTTIC (F) :        | Proc. innovation (*)<br>Proc. design/control<br>Chem. ind. assoc.<br>Proj. Management (*) | INERIS (F) :<br>ICPF–Prague (CZ) :<br>ICT-Prague (CZ) :<br>WUT–Warsaw (PL) :<br>ETSEQ–Tarragona (ES) : | Process Safety<br>Process Eng.<br>Chem. Tech.<br>Chem. Eng.<br>Chem. Eng. |



Miniaturization and intensification : a PROCESS DESIGN solution

## What we NEED, and WHY it is DIFFERENT!

Principle : construction of <u>large–scale systems</u>, but with <u>small–scale inner–structuring</u> at specifically targeted points only (= locally structured elements)

INTEGRATED MULTISCALE DESIGN Claim: a « paradigm shift », inspired by numbering–up, that REVERSES traditional engineering practice :

Rather than determining « optimal » <u>global</u> operating conditions to adapt chemistry to equipment limitations, adapt the equipment to IMPOSE the <u>local</u> operating conditions required by the desired chemistry !

Shortcoming : the methodology does NOT (yet) exist !



The IMPULSE Project : Goals and demands on key deliverables

## **Project Goals**

The key IMPULSE « Deliverables » ⇒ Design methods and tools = <u>HOW</u> ⇒ Decision–making criteria = <u>WHEN</u>

#### **Conditions for Project Success**

Methods, tools and criteria must be :

The key DEMANDS on the IMPULSE « Deliverables »

relevant, reliable, accessible

<u>AND</u>

« teachable » !!



#### Selected Application Areas : High value added supply sectors

#### ♦ Key issues

- ≻ R&D times ↓
- ≻ Scale-up risk ↓
- ➤ Capital lockup ↓
- ➤ Time-to-market ↓
- ➤ Manufacturing cost ↓
- Process safety 1
- Sustainability 1
- ➢ Distributed/on demand manufacuring ✓
- **Pharmaceutical Products** gs GlaxoSmithKline Continuous hydrogenation •Continuous solids handling Integrated primary and secondary manufacturing **Fine Chemicals** degussa. •Liquid-liquid alkylation (ionic liquid synthesis) Miniemulsion polymerisation Electrochemical alkoxylation **Consumer Products** P&G Sulfonation and sulfation •Targeted encapsulation (of e.g. perfumes)
  - Controlled emulsification



- Micro and meso-structured components, control and instrumentation techniques open opportunities for step changes in manufacturing by allowing much more precise control of conditions;
- More precise processing opens opportunities for new business models and enhanced sustainability through more efficient, inherently safer processing, distributed manufacture etc.;
- The delivery of [potentially more extreme] conditions very precisely opens the opportunity for the delivery of new, **previously inaccessible products**;
- An increase in processing precision implies an increase, or at least no decrease of the level of **process understanding** required for process implementation;
- Benefit from deploying new technology can be not only in new process design but also in the design of multipurpose facilities and retrofitting to existing processes.

# PULSE

What is

structuring?

 $\succ$  All of these devices

can be thought of

as "structured" for

P

# What is Structured Multiscale Processing?

#### Oscillatory baffled

reactor





# Microreactor technologies developed at LLNL



Spinning disc reactor



**Printed Circuit Heat Exchangers** 



# What is Structured Multiscale Processing?

# ♦ Structured?

Using geometric and other features to control the environment of processing precisely

# ♦ Multiscale?

Understanding that different processes have inherently different intrinsic rates, so we should adapt the scale of the equipment to the duty

# ♥ Processing?

A way of transforming materials into products to meet the needs of society – in time, at cost and without harm



# What is Structured Multiscale Processing?

## ♦ What is structuring?

> A **relative** concept not an absolute one

- A process in a microreactor is structured for many flow types
  - Laminar flow controls geometry and concentration field precisely
- A fast reaction in a large agitated vessel is not structured
  - Reaction in a small part of the vessel
  - Turbulence makes local environment unsteady

# Technical Benefits of Structuring to Processing

♥ Intensity

PULSE

- Lower inventories of material,
- Smaller equipment,
- > Ability to use exotic materials,
- Ability to access extreme conditions
- Scheric Precision
  - Much more controlled conditions
  - Higher degree of predictability
- ♥ BUT
  - Benefits do not arise in every case
  - Benefits are not of commercial value in every case
  - Benefits do not always improve further with increased structuring



#### Structured Multiscale Processing Identifying the appropriate level



**Overall plant value** 

How structured is structured enough?

- e.g. medium-scale nitration of benzene
  - TOO structured brings no extra benefit



## Interaction with IMPULSE IMPULSE User Group

## First targeted group: Equipment Manufacturers

Discussion and validation of equipment selection/characterisation methods

#### **Equipment selection process**

**Equipment characterisation proforma** 





## **Beyond IMPULSE :**

**Future challenges for industrial development** 

1 Major Objective

2 Key Challenges Overcoming barriers to wide-spread, routine implementation of intensified, multiscale technologies over a broad range of application areas and production scales

#### breaking economies of scale

- robust, low-cost microcomponents
- a market (and standards) for
  - equipment manufacturers
- new production paradigms for
  - MUCH lower capital investment

### intensifying PRODUCT engineering

- targeted production of end-use properties through local process control
- methods for accelerated scale-up from bench-top to production



# SUMMARY :

Why IMPULSE? Why now? and ... What's next?



Intensified microstructured process components and devices of proven performance currently available

## PROBLEM

Industrial take-up of the new technologies in the chemical process industries slow and unsystematic



Appropriate design methodology (and corresponding tools) for techno–economic evaluation, decision–making, process development and scale–up

**MULTISCALE DESIGN** 



Local process control, Constructal optimization, Laboratory / process similitude, Innovative business models

**Future CHALLENGES** 



Wide-spread implementation, Reduced capital investment, Intensified PRODUCT engineering

#### www.impulse-project.org